MATE - Matemáticas

MATE 0001 Profundización en Precálculo

Este curso pretende dar a los estudiantes inscritos, tiempo adicional de apoyo en los temarios del curso MATE1201-Precálculo.

Distribución

-

MATE 0002 Profundizacion en Calculo Diferencial

Este curso pretende dar a los estudiantes inscritos, tiempo adicional de apoyo en los temarios del curso MATE1203-Cálculo diferencial

Créditos

1

Distribución

-

Obligatoria 1

El estudiante podrá escoger una materia entre MATE2101- ALGEBRA ABSTRACTA 1 y MATE2201- ANALISIS 1.

Créditos

3

MATE XXXX Electiva Matemáticas

Créditos

3 (4)

XXXX XXXX Electiva

Créditos

4

XXXX XXXX Electiva

Créditos

3

XXXX XXXX Electiva y/o Curso Obligatorio de Nivelación

Créditos

4

XXXX XXXX Electiva y/o Curso Obligatorio de Nivelación

Créditos

3

XXXX XXXX Curso de Posgrado

Créditos

4

XXXX XXXX Curso de Posgrado

Créditos

4

MATE 1002B Matematicas y Civilizacion

Este curso pretende explorar los conceptos que se han desarrollado y madurado en distintas épocas sin los cuales no se podría concebir el mundo actual, o por lo menos, la matemática actual. Se puede pensar en reducirlos a cuatro grandes temas: 

1. La idea de número. 

2. “El gran libro [de la naturaleza] está escrito en lenguaje matemático”. 

3. La independencia del mundo físico. 4. La simbiosis entre la matemática y el computador.

Créditos

3

Distribución

-

MATE 1005B Leonardo Da Vinci

Este curso se propone hacer un recorrido por la vida y la obra de Leonardo da Vinci, presentando sus investigaciones y sus trabajos en el doble contexto del marco de su época y de las disciplinas que hoy constituyen las ciencias, las artes y la cultura en general. Doble, y quizás triple contexto, pues, por una parte, no se puede tener una idea cabal del Renacimiento si se pasa por alto la dedicación que artistas, filántropos y humanistas mostraron hacia el saber desarrollado en la Antigüedad clásica; y, por otra parte, la fascinación que ha suscitado la figura de Da Vinci se debe en gran medida a que la intuición que siguió al indagar en campos muy diversos lo muestra como un claro adelantado a hallazgos y conocimientos que sólo se vendrían a descubrir y a aceptar décadas y siglos más tarde.

Créditos

3

Distribución

-

MATE 1010 Seminario de Matematicas

Introducción a las diferentes áreas que componen el programa de Matemáticas. Acercamiento de los estudiantes a los profesores del Departamento a través de las diferentes charlas que los profesores hacen sobre sus áreas de trabajo. Aproximación a las experiencias de la vida matemática de cada profesor mediante entrevistas sobre su biografía académica. Iniciación al trabajo matemático mediante la elaboración de una pequeña monografía.

Créditos

1

Distribución

-

MATE 1041B Geometria Sagrada

En momentos privilegiados de las civilizaciones, se han unido el pensamiento, la mano y la luz en un inusual acto de armonía, y a las huellas que han quedado como resultado de esta forma de lenguaje mayor las denominamos catedrales, mandalas, pirámides, santuarios, pagodas, menhires, tabernáculos y templos. En este curso se invita a estudiar la estructura, el contexto y la función simbólica de unas de las edificaciones de culto más representativas de todos los tiempos. Los megalitos de Stonhenge, la pirámide “de Keops”, el oráculo de Delfos, el Tabernáculo de Israel, la Kaaba de La Meca, la catedral de Chartres, el laberinto de Creta y la pagoda de Horyu-ji son algunas de las construcciones más conocidas, ya sea a través de su relato mítico, o por sus vestigios arqueológicos, o en su funcionamiento vivo. Durante las clases enfocaremos nuestra atención en unas de ellas, escogidas de modo que sean distintivas de las culturas egipcia, griega, judía, cristiana, musulmán, celta y budista. Por su parte, los estudiantes podrán exponer en sus trabajos lo relativo a otras construcciones, que convoquen su interés y complementen el repertorio.

Créditos

3

Distribución

-

MATE 1064B Pensamiento a Traves de los Numeros

Créditos

3

Distribución

-

MATE 1442B Ideas en Espacio y Tiempo

Se busca lograr que el estudiante descubra por sí mismo la belleza oculta de la Matemáticas en uno de sus áreas más representativas, a saber, la Geometría. Mediante el estudio previo (informal) de la Geometría Euclidiana y algunas no Euclidianas, así como de sus aplicaciones en arte, arquitectura y física, se pretende que el estudiante comprenda (de un modo no técnico) la noción de verdad tanto en Matemáticas como en la ciencia en general, así como su evolución a través de la Historia.

Créditos

3

Distribución

-

MATE 1721 Principios Matematicos en Medicina

Créditos

3

Distribución

-

MATE 1721L Laboratorio Principios Matemáticos en Medicina

Créditos

0

Distribución

-

MATE 1751 Modelado Matemático

Créditos

3

Distribución

-

MATE 1019B Las Formas del Laberinto

En este curso se pretende ir construyendo paso a paso una reflexión amplia sobre el tema del laberinto, a medida que se invita al estudiante a hacer un recorrido por la rica variedad de expresiones que ha alcanzado su representación, a lo largo de los tiempos y a lo ancho de las culturas. Esta indagación nos permitirá, a la vez, internarnos en campos tan diversos como la música (Bach, Monteverdi, Berio), la literatura (Sófocles, Virgilio, Las mil y una noches, Dante, Proust, Kafka, Borges, Perec, Eco), la arquelogía (Evans, Petrie, Hawass), la simbología de las tradiciones espirituales (Jung, Eliade, Guénon, Burckhardt), las artes plásticas (Da Vinci, Tintoretto, Piranesi, Watts, Picasso, Escher), las matemáticas (álgebras de Boole, grupos cíclicos), la mitografía (Apolodoro, Ovidio, Plutarco), la informática (algoritmos para modelar la salida de un laberinto) y los juegos (de estrategia, de la oca, tarot).

MATE 1031 Tutorial Matemática Estructural

Este curso busca ayudar a los estudiantes a resolver dudas y conceptos del curso MATE1102 Matemática Estructural.

Distribución

-

MATE 1032 Tutorial Análisis 1

Este curso busca ayudar a los estudiantes a  resolver dudas y conceptos del curso MATE2201 Análisis 1.

Distribución

-

MATE 1041B Geometria Sagrada

En momentos privilegiados de las civilizaciones, se han unido el pensamiento, la mano y la luz en un inusual acto de armonía, y a las huellas que han quedado como resultado de esta forma de lenguaje mayor las denominamos catedrales, mandalas, pirámides, santuarios, pagodas, menhires, tabernáculos y templos. En este curso se invita a estudiar la estructura, el contexto y la función simbólica de unas de las edificaciones de culto más representativas de todos los tiempos. Los megalitos de Stonhenge, la pirámide “de Keops”, el oráculo de Delfos, el Tabernáculo de Israel, la Kaaba de La Meca, la catedral de Chartres, el laberinto de Creta y la pagoda de Horyu-ji son algunas de las construcciones más conocidas, ya sea a través de su relato mítico, o por sus vestigios arqueológicos, o en su funcionamiento vivo. Durante las clases enfocaremos nuestra atención en unas de ellas, escogidas de modo que sean distintivas de las culturas egipcia, griega, judía, cristiana, musulmán, celta y budista. Por su parte, los estudiantes podrán exponer en sus trabajos lo relativo a otras construcciones, que convoquen su interés y complementen el repertorio.

Créditos

3

Distribución

-

MATE 1064B Pensamiento a Traves de los Numeros

El curso pretende abrir la posibilidad de que los estudiantes de diversas disciplinas se aproximen al conocimiento de la teoría de los números, y a que puedan sumergirse en problemas interesantes y exigentes, desarrollando así sus habilidades analíticas.

Créditos

3

Distribución

-

MATE 1102 Matematica Estructural

Conjuntos, operaciones conjuntistas, demostración por elementos, álgebra de conjuntos. Teoría de números, principio del buen orden, principios de inducción, aplicaciones a conteo. Divisibilidad, algoritmo de la división, algoritmo de Euclides, números primos, congruencias, teorema chino de los residuos, pequeño teorema de Fermat. Relaciones, órdenes, relaciones de equivalencia, funciones, aplicaciones a conteo. Cardinalidad de conjuntos finitos e infinitos, teorema de Cantor-Schröder-Bernstein. Estructuras matemáticas, isomorfismo de estructuras, rudimentos de teoría de grupos.

Créditos

3

Distribución

-

MATE 1103 Teoria de Numeros

La teoría de números ha determinado y sigue determinando en gran parte la historia de las matemáticas. Su estudio exige el desarrollo y ejercicio del raciocinio riguroso. Los problemas que plantean, muchos desconcertantes por su aparente simplicidad, han sido fuente de inspiración para la creación matemática a todos los niveles. Temas: Durante los primeros tres meses se verán temas como divisibilidad, primos, ecuaciones lineales, congruencias, residuos cuadráticos, funciones multiplicativas, ecuaciones diofantinas no lineales, fracciones continuas, aproximación de irracionales, distribución de los primos. Si queda tiempo, durante el último mes se verán temas escogidos por el instructor.

Créditos

3

Distribución

-

MATE 1105 Algebra Lineal 1

Vectores en el espacio Euclideo, norma y producto escalar.  Matrices y su álgebra, sistemas de ecuaciones lineales. Inversas de matrices cuadradas, sistemas homogéneos, subespacios y bases. Independencia y dimensión, el rango de una matriz. Transformaciones lineales en espacios Euclideos, transformaciones lineales del plano. Espacios vectoriales, conceptos básicos en espacios vectoriales, vectores en coordenadas. Transformaciones lineales y determinantes. Áreas volúmenes y producto cruz, el determinante de una matriz cuadrada, cálculo de determinantes y regla de Cramer. Valores y vectores propios, diagonalización y aplicaciones. Proyecciones, el proceso de ortogonalización de Gram-Schmidt, matrices ortogonales. Matriz de proyección y el método de cuadrados mínimos. Cambio de base, representaciones matriciales y similaridad. Diagonalización de formas cuadráticas. Aplicaciones a la geometría.

Créditos

3

Distribución

-

MATE 1106 Algebra Lineal 1 (Honores)

El contenido es el mismo de MATE-1105 pero con mayor profundidad y rigor. Vectores en el espacio Euclideo, norma y producto escalar.  Matrices y su álgebra, sistemas de ecuaciones lineales. Inversas de matrices cuadradas, sistemas homogéneos, subespacios y bases. Independencia y dimensión, el rango de una matriz. Transformaciones lineales en espacios Euclideos, transformaciones lineales del plano. Espacios vectoriales, conceptos básicos en espacios vectoriales, vectores en coordenadas. Transformaciones lineales y determinantes. Áreas volúmenes y producto cruz, el determinante de una matriz cuadrada, cálculo de determinantes y regla de Cramer. Valores y vectores propios, diagonalización y aplicaciones. Proyecciones, el proceso de ortogonalización de Gram-Schmidt, matrices ortogonales. Matriz de proyección y el método de cuadrados mínimos. Cambio de base, representaciones matriciales y similaridad. Diagonalización de formas cuadráticas. Aplicaciones a la geometría.

Créditos

3

Distribución

-

MATE 1107 Algebra Lineal 2

Repaso del curso anterior (Mate-1105) con mayor rigor: Espacios vectoriales, Subespacios, Combinaciones lineales, Bases y dimensión; Transformaciones lineales, núcleo e imagen; Representación matricial de una transformación lineal, Matriz de cambio de coordenadas, Espacio dual; Matrices elementales y sistemas de ecuaciones lineales; Determinantes, su caracterización como forma multilineal; Valores y vectores propios, diagonalizabilidad, subespacios invariantes, Teorema de Cayley-Hamilton; Espacios con Producto Interno: OPeñador adjunto, OPeñadores normales, autoadjuntos, unitarios y ortogonales; Proyección ortogonal y Teorema Espectral, Formas bilineales y cuadráticas. Aplicaciones a la teoría de la relatividad: Principio de relatividad de Einstein; Transformaciones de Lorentz. Forma Canónica de Jordan: Forma normal de Jordan; polinomio minimal. Álgebra Multilineal y Tensores: Tensores sobre un espacio vectorial; Ejemplos y aplicaciones.

Créditos

3

Distribución

-

MATE 1201 Precalculo

Álgebra y aritmética: operaciones con fracciones, números reales, notación científica,  exponentes y radicales, polinomios, factorización,  expresiones racionales, ecuaciones, aplicaciones, desigualdades. Funciones: definición de función, gráficos de funciones, funciones lineales, pendiente, operaciones entre funciones, función compuesta, función inversa, distancia, punto medio, círculos. Funciones polinomiales y racionales: números complejos, funciones cuadráticas, funciones polinomiales, sus raíces y sus gráficas, funciones racionales y sus gráficas, desigualdades de funciones polinomiales y racionales, aplicaciones. Geometría y trigonometría: ángulos, triángulos semejantes, Teorema de Pitágoras, trigonometría en triángulos rectángulos, funciones trigonométricas, gráficos de funciones trigonométricas, identidades trigonométricas, ecuaciones trigonométricas.

Créditos

3

Distribución

-

MATE 1203 Calculo Diferencial

Funciones: álgebra de funciones, funciones trigonométricas, exponencial, funciones inversas, logaritmos, inversas trigonométricas, principios de resolución de problemas. Límites y derivadas: velocidad y tangentes, límite de una función, cálculo de límites, continuidad, límites al infinito, razones de cambio, derivadas, la función derivada, reglas de derivación, derivadas de funciones trigonométricas, regla de cadena,  derivación implícita, derivadas de logaritmos, derivadas de orden superior, funciones hiperbólicas. Aplicaciones de las derivadas: razones relacionadas, máximos y mínimos, teorema del valor medio, derivadas y gráficas, regla de l'Hôpital, trazado de curvas, optimización. Integrales: antiderivadas, áreas y distancia, integral definida, teorema fundamental del cálculo, integración por sustitución, áreas entre curvas, volúmenes de sólidos de rotación por los métodos de rebanadas y de conchas cilíndricas. 

Créditos

3

Distribución

-

MATE 1204 Calculo Diferencial (Honores)

Este curso se recomienda a los estudiantes que traen mejores bases matemáticas del bachillerato, a los más interesados en esta disciplina y, en particular, a los estudiantes de matemáticas. En los distintos programas de estudio de la universidad, es equivalente al curso MATE-1203 y su contenido es el mismo, pero con mayor profundidad y rigor pues se imparte a estudiantes con mayor preparación y más competitivos. Funciones: álgebra de funciones, funciones trigonométricas, exponencial, funciones inversas, logaritmos, inversas trigonométricas, principios de resolución de problemas. Límites y derivadas: velocidad y tangentes, límite de una función, cálculo de límites, continuidad, límites al infinito, razones de cambio, derivadas, la función derivada, reglas de derivación, derivadas de funciones trigonométricas, regla de cadena,  derivación implícita, derivadas de logaritmos, derivadas de orden superior, funciones hiperbólicas. Aplicaciones de las derivadas: razones relacionadas, máximos y mínimos, Teorema del Valor Medio, derivadas y gráficas, Regla de l'Hôpital, trazado de curvas, optimización. Integrales: antiderivadas, áreas y distancia, integral definida, Teorema Fundamental del Cálculo, integración por sustitución, áreas entre curvas, volúmenes de sólidos de rotación por los métodos de rebanadas y de conchas cilíndricas.

Créditos

3

Distribución

-

MATE 1207 Calculo Vectorial

Se comienza con las ecuaciones de planos, rectas, superficies cilíndricas y superficies cuádricas en 3D. A partir del concepto de vector se definen campos escalares, campos vectoriales y en general funciones vectoriales. Se tratan los principales temas del cálculo infinitesimal en varias variables como son límites, derivadas e integrales. Todo el curso está orientado a estudiar los teoremas fundamentales del cálculo vectorial: El teorema de Green, el teorema fundamental para integrales de línea, el teorema de Stokes y el teorema de Gauss. El curso también incluye varias aplicaciones de estas ideas: Optimización libre y optimización restringida (multiplicadores de Lagrange), centros de masa y momentos de inercia, planos tangentes, campos vectoriales conservativos, potencial escalar, gradiente, rotacional y divergencia.

Créditos

3

Distribución

-

MATE 1208 Calculo Vectorial (Honores)

Curvas en el plano y en el espacio. Superficies cilíndricas y cuádricas. Rectas y Planos. Derivadas parciales, regla de la cadena. Diferenciación en campos escalares y vectoriales: definiciones, técnicas y aplicaciones. Noción de gradiente. Máximos y mínimos de funciones de varias variables. Multiplicadores de Lagrange. Integrales de línea, múltiples, de superficie y de volumen. Teoremas de Green, Stokes y Gauss. Aplicaciones físicas y geométricas. La diferencia con MATE-1207 no es el contenido, es la profundidad y  rigurosidad de los temas tratados.

Créditos

3

Distribución

-

MATE 1209 Calculo 3 (Economia y Administracion)

En éste curso se introducen los temas de cálculo en varias variables – diferenciación e integración y, principalmente, el tema de  optimización con y sin restricciones.  Uno de los objetivos es que el estudiante vea la aplicación de estos temas a la Economía.  Haciendo énfasis en el uso de las matemáticas, las técnicas tienen aplicaciones no solamente en el ámbito económico sino también en otras áreas como Administración, Ingeniería, Física, o Biología.  El estudiante también se va familiarizándose con un rigor matemático, pues se demuestran formalmente muchos de los resultados y teoremas. Funciones de varias variables. Derivadas parciales, Formas cuadráticas. Regla de la Cadena. Derivadas de funciones definidas implícitamente. Elasticidades parciales. Funciones homogéneas. Sistemas de Ecuaciones. El Teorema de la Función Implícita. Optimización. Máximos y Mínimos. Teoremas de los Valores Extremos. Puntos extremos locales. Conjuntos convexos. Funciones cóncavas y convexas. Pruebas de segundas derivadas. Métodos de los multiplicadores de Lagrange.

Créditos

3

Distribución

-

MATE 1212 Matematicas 1 (Biologia-Medicina)

Función. Gráficos de funciones. Funciones cuadráticas. OPeñaciones en funciones. Funciones inversas. Polinómicas y funciones racionales. Funciones exponencial, logarítmica y trigonométricas. Escalas logarítmicas. Transformaciones de gráficas. Translación vertical y horizontal. Problemas de tangente y velocidad. Límite de una función. Límite. Continuidad. Límites al infinito. Tangentes, velocidades y otros índices del cambio. Derivadas. Función derivada. Regla de derivación. Reglas del producto y cociente. Derivadas en ciencias naturales y sociales. Derivadas de funciones trigonométricas. Regla de cadena. Derivadas de orden superior. Diferenciación implícita. Teorema del valor medio. Antiderivadas. Áreas y distancias. Integral definida. Teorema fundamental del cálculo. Integral indefinida. Regla de substitución. Logaritmo como integral. Áreas entre curvas. Valor medio de una función. Integración por partes.

Créditos

3

Distribución

-

MATE 1213 Matematicas 3 (Biologia-Medicina)

Repaso de Integral. Técnicas de Integración. Ecuaciones Diferenciales. Equilibrios y estabilidad. Puntos y vectores. La norma de un vector. Producto de vector. Líneas en el plano. El producto escalar. Ecuación paramétrica de la recta. Funciones de varias variables. Derivadas parciales. Planos tangentes, funciones derivables y linealización. La regla de la cadena. Derivada direccional y gradiente, Máximos y mínimos. Línea de regresión. Integrales múltiples. Sistemas lineales. Sistemas autónomos no lineales y aplicaciones a la biología.

Créditos

3

Distribución

-

MATE 1214 Calculo Integral con Ecuaciones Diferenciales

Integración por partes, Integrales trigonométricas, sustitución trigonométrica, fracciones parciales, estrategias de integración, integrales impropias, longitud de arco, área de superficie de revolución, aplicaciones a otras disciplinas, modelación con ecuaciones diferenciales de primer orden, ecuaciones separables, crecimiento y decaimiento exponencial, ecuación logística, ecuación lineal de primer orden. Ecuaciones paramétricas, cálculo con ecuaciones paramétricas, coordenadas polares, áreas y longitud en coordenadas polares, sucesiones, series, criterio de la integral, criterios de comparación, series alternantes, criterios de la razón y la raíz n-ésima, series de potencias, representación en series de potencias, series de Taylor y Maclaurin, números complejos, ecuaciones diferenciales lineales de segundo orden de coeficientes constantes.

Créditos

3

Distribución

-

MATE 1215 Calculo Integral con Ecuaciones Diferenciales (Honores)

En contenido, este curso es similar al curso MATE-1214, pero el tratamiento de los temas se hace más a profundidad. El contenido cubre integración por partes, integrales trigonométricas, sustitución trigonométrica, fracciones parciales, estrategias de integración, integrales impropias, longitud de arco, área de superficie de revolución, aplicaciones a otras disciplinas, modelación con ecuaciones diferenciales de primer orden, ecuaciones separables, crecimiento y decaimiento exponencial, ecuación logística, ecuación lineal de primer orden, ecuaciones paramétricas, cálculo con ecuaciones paramétricas, coordenadas polares, áreas y longitud en coordenadas polares, sucesiones, series, criteriode la integral, criterios de comparación, series alternantes, criterios de la razón y la raíz n-ésima, series de potencias, representación en series de potencias, series de Taylor y Maclaurin, números complejos, ecuaciones diferenciales lineales de segundo orden de coeficientes constantes.

Créditos

3

Distribución

-

MATE 1251 Métodos Cuantitativos

Este es un curso básicamente de técnicas algebraicas y sus aplicaciones, con una aplicación de las series a las matemáticas financieras al final del curso. El texto está orientado a la enseñanza y utilización de las técnicas.

Créditos

3

Distribución

-

MATE 1252 Calculo Integral-Probabilidad

Este curso cubre dos grandes temas, Cálculo Integral, incluyendo series y su convergencia y una introducción a Probabilidades, restringida a variables aleatorias unidimensionales. Se supone que el estudiante ha visto el curso de Cálculo Diferencial (MATE 1203), y por tanto maneja el concepto de antiderivada, así como el Teorema Fundamental del Cálculo y la técnica de integración por medio de sustitución de variables. A partir de allí, en MATE1252 se desarrolla el estudio de las técnicas clásicas de integración en una variable y sus aplicaciones a diversos problemas, incluyendo problemas geométricos planteados en términos de curvas. Posteriormente, el estudiante enfrenta el tema de series infinitas y adquiere conocimiento sobre los criterios fundamentales de convergencia y divergencia de series. La discusión sobre Probabilidades parte de la motivación de los axiomas de la probabilidad, para luego discutir las consecuencias de los axiomas, la probabilidad condicional e independencia de eventos y el cálculo de probabilidad para variables aleatorias discretas o continuas y para funciones de variables aleatorias.

Créditos

3

Distribución

-

MATE 1253 Calculo 3 y Algebra Lineal 1

En este curso se cubren dos áreas: Álgebra Lineal y Cálculo III. En álgebra lineal se estudia Rn, vectores, suma, producto punto (escalar), sus propiedades, ecuación de la recta, ecuación del plano, sistemas de ecuaciones, matrices, determinantes, valores y vectores propios. Por otra parte, en Cálculo tres, está orientado a maximización y minimización de funciones en varias variables. Es importante señalar que en cada uno de los temas siempre se ve su aplicabilidad desde el punto de vista de economía y administración es por ello que temas como: Conjuntos convexos, funciones tipo Coob- Douglas, Leontief, CES, max  son de mucha relevancia en el curso.

Créditos

3

Distribución

-

MATE 1257 Cálculo Vectorial (Computacional)

En este curso se desarrolla el cálculo para funciones de varias variables, métodos de optimización para funciones de varias variables, aplicaciones de integrales múltiples, la integral de línea y de superficie. Se estudiara el teoremas de Green, Stokes y el Teorema de la Divergencia.

El énfasis será en el aprendizaje orientado a problemas y el uso de herramientas computacionales y de impresión 3d para aplicar los conceptos del curso.

MATE 1407 Geometría Analítica

Los dos problemas fundamentales de la geometría analítica clásica son:

1) Dada una ecuación, determinar su interpretación geométrica o su representación.

2) Dada una figura geométrica o una condición geométrica, determinar su ecuación o representación analítica.

La geometría analítica es el lenguaje que une la geometría y el álgebra. Hoy día estos mismos problemas siguen siendo válidos pero dentro de un contexto más general. Es normal que se encuentren algunos temas comunes con el curso de Álgebra Lineal por la naturaleza de la Geometría Analítica la cual nace de un "matrimonio'' entre el álgebra y la Geometría, aunque los temas tienen enfoques diferentes.

El objetivo primordial del curso es desarrollar en el estudiante ambos lenguajes, el geométrico y el algebraico y capacitarlo para poder  pasar de un lenguaje al otro sin ningún problema. Sobre todo el curso es muy importante para la formación de un matemático joven porque apoya su entendimiento de las matemáticas como un sistema integral.


Créditos

3

MATE 1441B Escher: Geometría y Arte

Se espera que al finalizar el curso, el estudiante tenga una comprensión de la relación geometría arte y que domine técnicas para construir algunos diseños decorativos, con una sustentación geométrica y con apoyo en software de libre acceso. El curso aborda momentos importantes en el desarrollo de la Geometría y su correspondiente manifestación artística: Conceptos básicos de geometría. Topología intuitiva. Movimientos rígidos. Mosaicos. Razones, proporciones y semejanza. Poliedros. Geometría fractal.

Créditos

3

Distribución

-

MATE 1442B Ideas en Espacio y Tiempo

Se busca lograr que el estudiante descubra por sí mismo la belleza oculta de la Matemáticas en uno de sus áreas más representativas, a saber, la Geometría. Mediante el estudio previo (informal) de la Geometría Euclidiana y algunas no Euclidianas, así como de sus aplicaciones en arte, arquitectura y física, se pretende que el estudiante comprenda (de un modo no técnico) la noción de verdad tanto en Matemáticas como en la ciencia en general, así como su evolución a través de la Historia.

Créditos

3

Distribución

-

MATE 1501 Estadistica 1 (Ciencias Sociales)

Curso introductorio que pretende dar herramientas descriptivas y de inferencia en el manejo de datos en un experimento de tipo social, para encontrar conclusiones sobre el comportamiento de un individuo con respecto a su entorno social, político, económico, etc. Contenido: términos básicos; Análisis descriptivo, histogramas, ojivas, medidas de tendencia central, de dispersión, interpretación de gráficas. Introducción a la probabilidad: definición de evento, función de densidad de probabilidad y sus reglas, eventos mutuamente excluyentes, eventos independientes, probabilidad condicional. Variables aleatorias discretas, distribución binomial, media y desviación estándar de la distribución binomial, distribución normal estándar. El teorema del límite central y aplicaciones. Estimación puntual y por intervalo de una media, dos medias, una y dos proporciones. Pruebas de hipótesis para una y dos medias y una y dos proporciones. Pruebas de independencia.

Créditos

3

Distribución

-

MATE 1502 Estadistica 2 (Ciencias Sociales)

Estimación puntual y por intervalo, pruebas de hipótesis, prueba de hipótesis e intervalos de confianza para muestras pequeñas, muestras dependientes e independientes, pruebas para la diferencia de dos medias de poblaciones independientes, estimación de σ (desviación estándar), pruebas para la desviación estándar de una población, pruebas para las desviaciones estándar de dos poblaciones independientes, estimación de una proporción, pruebas referentes a una proporción, pruebas referentes a dos proporciones, tablas de contingencia, pruebas de bondad de ajuste, regresión lineal simple, análisis de regresión, análisis de correlación, regresión lineal múltiple, prueba F y relación con la regresión lineal, introducción al análisis de varianza, descomposición de la varianza, análisis en un problema de clasificación de un factor, comparaciones a priori, pruebas post-hoc. Pruebas no paramétricas: prueba del signo, prueba del rango, pruebas no paramétricas, prueba del rango signado de Wilcoxon, prueba de Kruskal- Wall

Créditos

3

Distribución

-

MATE 1505 Probabilidad y Estadistica 1

El objetivo de este curso es familiarizar al estudiante con los conceptos básicos de probabilidad y con las distribuciones más usadas. Dicho conocimiento no solamente será útil para un curso posterior de Estadística o Procesos Estocásticos, sino que es directamente aplicable a muchas situaciones donde reina el azar o la aleatoriedad. Métodos Combinatorios. Coeficientes binomiales. Espacios Muestrales. Probabilidad, reglas. Probabilidad condicional,  independencia. Teorema de Bayes. Distribuciones de probabilidades. Variables Aleatorias continuas, funciones de densidad. Distribuciones multivariadas. Distribuciones marginales. Distribuciones condicionales. Valor esperado. Momentos, Teorema de Chebyshev. Funciones generatrices de momentos. Momentos producto. Momentos de combinaciones Lineales, esperanza condicional. Uniforme, Bernoulli, Binomial. Binomial negativa, geométrica, hipergeométrica. Poisson. Multinomial, hipergeométrica multivariada. Uniforme, gamma, exponencial ,j-i cuadrada. La distribución beta. La distribución normal. Aproximación normal a la binomial. Normal divariada. Funciones de variables aleatorias. Técnica de transformación: una variable. Técnica de transformación: varias variables. Técnica de función generatriz de momentos. Distribuciones de muestreo. Distribución de la media.

Créditos

3

Distribución

-

MATE 1506 Probabilidad y Estadistica 2

El objetivo de este curso es familiarizar al estudiante con la inferencia estadística, con la estimación y pruebas de hipótesis concernientes a los parámetros de una población y con modelos de regresión lineal múltiple. Se expone la teoría acompañada de ejemplos prácticos y prácticas con paquetes estadísticos como SPSS, SAS o STATA. Distribución de la media. Distribución ji cuadrada. Distribución t. Distribución F.  Estadísticas de orden. Estimadores insesgados. Eficiencia. Consistencia. Suficiencia. El método de momentos. El método de máxima verosimilitud. Estimación de medias. Estimación de diferencia entre medias. Estimación de proporciones. Estimación de diferencia entre proporciones. Estimación de varianzas y cociente. Pruebas de hipótesis. Lema de Neyman Pearson. Función potencia, razón de verosimilitudes. Pruebas de medias. Pruebas de diferencia entre medias. Pruebas de varianzas. Pruebas de proporciones. Análisis de una tabla rXc. Bondad de ajuste. Método de los mínimos cuadrados. Análisis de regresión normal. Análisis de correlación normal. Regresión lineal múltiple. Notación matricial.

Créditos

3

Distribución

-

MATE 1507 Matematicas 2 (Biologia-Medicina)

Sistemas de ecuaciones lineales. Matrices. Adición y multiplicación de matrices. Inversa de una matriz. Determinante. Estadística descriptiva: términos básicos, medidas de tendencia central y de dispersión. Análisis descriptivo, gráficas de Pareto, estogramas, interpretación de gráficas, datos divariados. Matemáticas discretas: Conjuntos, operaciones de conjuntos, conteo. Principios básicos de conteo. Permutaciones. Combinaciones. Relaciones, relación de equivalencia, particiones, coeficiente binomial. Funciones: principio del palomar, composición, simetría. Probabilidad: introducción a la probabilidad, definición de evento, función de probabilidad, reglas de la función de probabilidad, eventos mutuamente excluyentes, eventos independientes, probabilidad condicional, regla de Bayes, variables aleatorias discretas, distribuciones binomial, geométrica, y Poisson. El valor esperado, varianza y desviación estándar de las distribuciones discretas, distribuciones continuas: normal, uniforme y exponencial. Herramientas de estadística. Intervalos de confianza. Regresión Lineal.

Créditos

3

Distribución

-

MATE 1508 Estadistica (Contaduria)

En este curso se dan inicialmente unos conceptos básicos de probabilidad, pero está orientado a enseñar técnicas estadísticas básicas con énfasis en las aplicaciones. El texto del curso está orientado a las aplicaciones y hace uso de bases de datos reales, por lo que el curso también irá acompañado de software estadístico. El texto tiene una separata con un contenido matemático más formal, que el profesor usará convenientemente y que puede motivar al estudiante al estudio de material estadístico más avanzado.

Créditos

3

Distribución

-

MATE 2101 Algebra Abstracta 1

Conceptos preliminares: Conjuntos y Relaciones de Equivalencia. Grupos y SubGrupos: OPeñaciones Binarias, Grupos y Subgrupos, Grupos Cíclicos y Generadores. Grupos y Cosets: Grupos de Permutaciones, Orbitas, Ciclos y Grupos Alternantes, Introducción a Isomorfismos y el Teorema de Cayley, Cosets y el Teorema de Lagrange, Productos Directos y Grupos Abelianos Finitamente Generados. Homomorfismos y Grupos Factor: Homomorfismos, Grupos factor, grupos simples, series de grupos, grupos de acción sobre conjuntos, aplicaciones de G-conjuntos en combinatoria. Teoría Avanzada de Grupos: Teoremas de Sylow, Grupos abelianos libres, grupos libres. Anillos y campos: Anillos, Campos y dominios de integridad.

Créditos

3

Distribución

-

MATE 2104 Cristalografia Matematica

En este curso se establece la relación entre los conceptos de álgebra y el campo de cristalografía. Se trata de un curso de matemáticas, por lo tanto los temas de física serán desarrollados solo con el fin de motivación.

Créditos

3

Distribución

-

MATE 2113 Combinatoria Enumerativa y Algebraica

Este curso está dirigido a los estudiantes de matemáticas y de otras ciencias que quieran usar la teoría de combinatoria en sus carreras. Profundizaremos y extenderemos las ideas y construcciones que aparecen en el curso de matemática estructural para estudiar los problemas de conteo y sus aplicaciones en matemáticas, ciencia, e ingeniería.

Créditos

3

Distribución

-

MATE 2130 Introducción a la Teoría de Conjuntos

En este curso se presentarán los aspectos básicos de la teoría axiomática de conjuntos, desarrollada a partir de los axiomas de Zermelo-Fraenkel.

Créditos

3

MATE 2181 Introducción a la Teoría de la Computación

Este curso opcional dirigido a estudiantes de pregrado en una introducción rigurosa a los fundamentos matemáticos de la teoría de computación. Se estudian las correspondencias fundamentales entre los tipos de autómatas y lenguajes formales que participan en la jerarquía de Chomsky, las nociones básicas de computabilidad (máquinas de Turing y tesis de Church-Turing) y nociones básicas de complejidad computacional (clases P, NP, reductibilidad, problemas NP-completos.

Se espera que el estudiante que tome este curso ya conozca las nociones básicas de teoría de conjuntos (operaciones básicas de conjuntos y demostración de propiedades de conjuntos) y los métodos de demostración elementales, en particular el de demostración por inducción.

En el curso no se hará programación, pero sí se espera que el estudiante que tome que el curso está familiarizado con las nociones y estructuras básicas de programación (ciclos, instrucciones condicionales, recursión, etc.).

Créditos

3

Distribución

-

MATE 2182 Introducción a la computación cuántica

Este curso ofrece una introducción a los modelos matemáticos de la computación cuántica. Los temas cubiertos incluirán: probabilidad cuántica, algoritmos cuánticos (incluyendo algoritmo de factorización de Shor, algoritmo de búsqueda de Grover y el problema del subgrupo oculto), corrección cuántica de errores y una introducción a la teoría, computación cuántica tolerante a errores.

Créditos

3

Distribución

-

MATE 2201 Analisis 1

El curso está dirigido principalmente a estudiantes de matemáticas. Cubre los conceptos básicos del análisis que ya se trataron en los cursos de cálculo diferencial y de cálculo integral tales como función, sucesiones, límites, continuidad, integración de Riemann, series numéricas y de funciones, pero de forma rigurosa.

Créditos

3

Distribución

-

MATE 2210 Calculo de Variable Compleja (Ingenieria)

NÚMEROS COMPLEJOS: Conceptos básicos y representaciones. FUNCIONES ANALÍTICAS: Ecuaciones de Cauchy-Riemann, Funciones armónicas. FUNCIONES COMPLEJAS ELEMENTALES: exponencial, trigonométricas, hiperbólicas y logaritmo, Transformaciones con la función exponencial. INTEGRACIÓN COMPLEJA: Integrales de camino, Teorema de Cauchy-Goursat, Fórmula integral de Cauchy. SUCESIONES Y SERIES: Convergencia, Series de Taylor y de Laurent. RESIDUOS: El teorema de los residuos de Cauchy. APLICACIONES DE LOS RESIDUOS: Cálculo de integrales impropias, Integrales impropias en el análisis de Fourier, El lema de Jordan.

Créditos

2

Distribución

-

MATE 2211 Calculo de Variable Compleja

Números Complejos, álgebra de los complejos y geometría de los complejos. Aplicaciones conformes. Funciones analíticas. Funciones complejas elementales: exponencial, funciones trigonométricas, logaritmos. Integración compleja: teorema de Cauchy Goursat. Teorema de Liouville.  Sucesiones y series, series de potencias, series de Taylor y de Laurent. Cálculo de residuos. Representación conforme. Funciones armónicas.

Créditos

3

Distribución

-

MATE 2230 Variable Compleja y Análisis Numérico

Números Complejos. Funciones Analíticas. Funciones Elementales. Integrales. Teoremas de Cauchy-Goursat. Solución  Numérica de Ecuaciones en una Variable. Problemas de Valor Inicial en Ecuaciones Diferenciales Ordinarias. Métodos de solución de Sistemas Lineales, directos e iterativos. Solución de Sistemas de Ecuaciones no Lineales. Solución de problemas de frontera en Ecuaciones Diferenciales Parciales. Diferencias Finitas.

Créditos

3

MATE 2301 Ecuaciones Diferenciales

Métodos generales de resolución de ecuaciones de primer orden. Ecuaciones lineales de orden 2 o superior. Ecuaciones lineales de orden 2 con coeficientes variables. Aplicaciones a la física. Sistemas de ecuaciones de primer orden. Sistemas lineales homogéneos y no homogéneos. Aplicación de series de potencias a la solución de ecuaciones diferenciales. La transformada de Laplace. Series de Fourier.  Funciones ortogonales. Ecuaciones diferenciales parciales. Aplicaciones: ondas, vibraciones, conducción del calor.

Créditos

3

Distribución

-

MATE 2313 Sistemas Dinamicos

Créditos

3

Distribución

-

MATE 2411 Geometria de Curvas y Superficies

El objetivo principal de este curso es introducir los conceptos básicos de la belleza tema de la geometría diferencial a través del ejemplo de curvas y superficies, usando el cálculo y el álgebra lineal como las principales herramientas, muchos de los métodos interesantes son desarrollados para capturar las propiedades locales y globales de curvas y superficies.

Créditos

3

Distribución

-

MATE 2506 Probabilidad y Estadistica (Economia)

El curso lo podemos dividir en dos, siendo la primera la probabilista y la segunda estadística inferencial. En la primera parte del curso el objetivo es familiarizar al estudiante con procesos no determinísticos, es decir con aquellos procesos con los cuales al ser realizados una vez no sabemos su resultado, pero si cuales pueden ser todos los posibles resultados, para ello al estudiante se le introduce en la teoría básica de probabilidad desde un enfoque axiomático, haciendo parte de esto los diferentes tipos de variables. En la segunda parte del curso el objetivo es dotar al estudiante de herramientas que le permitan a partir de una muestra aleatoria por inferir, concluir, etc., acerca de la población, es por eso que se busca la familiarización del estudiantes con los conceptos de: distribuciones muéstrales, estimación, prueba de hipótesis, entre otros. Un objetivo no menos importante es el inicio del estudiante en el manejo del paquete estadístico STATA y EXCEL, con el objetivo de aplicar los conceptos vistos en clase, ya que serán de gran importancia en su curso de Econometría.  

Créditos

4

Distribución

-

MATE 2507 Prob. y Estad Asuntos Publicos

En este curso se dan inicialmente unos conceptos básicos de probabilidad, pero está orientado a enseñar técnicas estadísticas básicas con énfasis en las aplicaciones. El texto del curso está orientado a las aplicaciones y hace uso de bases de datos reales, por lo que el curso también irá acompañado de software estadístico. El texto tiene una separata con un contenido matemático más formal, que el profesor usará convenientemente y que puede motivar al estudiante al estudio de material estadístico más avanzado.

Créditos

4

Distribución

-

MATE 2509 Estadistica (Economia)

Créditos

4

Distribución

-

MATE 2510 Probabilidad (Honores)

Espacios de probabilidad. Conteo, permutaciones, combinaciones, coeficientes multinomiales, espacio muestral, eventos, axiomas de probabilidad, eventos igualmente probables, probabilidad como función continua, como medida de credibilidad,  probabilidad condicional, fórmula de Bayes, eventos independientes, P(.|F) es una probabilidad, variables aleatorias (v.a), discretas, valor esperado, esperanza de una función de v.a, varianza, Bernoulli y Binomial, Poisson, otras discretas, Función de distribución acumulada, variables aleatorias continuas, esperanza y varianza, Uniforme, Normal, Exponencial, Otras continuas, Distribución de una función de una variable aleatoria, distribuciones conjuntas, variables aleatorias independientes, suma de v.a. independientes, distribución condicional, estadísticos de orden, Probabilidad conjunta de función de variable aleatoria, esperanza de sumas, momentos del número de eventos, covarianza, correlaciones, esperanza condicional, y predicción, Función generadora de momentos, Normal multivariada, Ley débil de los grande números, Teorema del límite central, Ley fuerte de los grandes números.

Créditos

3

Distribución

-

MATE 2604 Teoria De Analisis Numerico

Varios problemas de la vida real se modelan usando ecuaciones algebraicas o diferenciales. El matemático que resuelve estos problemas debe asegurarse que la solución existe. Pero en muchos casos (casi todos) es imposible encontrar tal solución. Justamente el análisis numérico consiste en encontrar aproximaciones a dichas soluciones. Contenidos: Interpolación. Integración Numérica. Calculo matricial. Normas vectoriales y matriciales. Resolución directa Sistemas Lineales. Métodos iterativos. Métodos basados en Optimización. Ecuaciones con derivadas parciales: diferencias finitas y elementos finitos.

Créditos

3

Distribución

-

MATE 2711 Metodos Matematicos para Economistas

El curso tiene como objetivo desarrollar en forma rigurosa los temas de optimización estática, ver sus aplicaciones a la teoría del productor y del consumidor e introducir una componente dinámica por medio de ecuaciones diferenciales para, finalmente, combinar la parte dinámica con la optimización – Teoría de Control Óptimo, Cálculo de Variaciones y Programación Dinámica (Bellman).  Conjuntos convexos, funciones. Cóncavas, convexas, cuasi. Máximos y mínimos. Máximos y mínimos restringidos. Kuhn – Tucker.  Teorema de la envolvente - aplicaciones T del productor y T del consumidor. Ecuaciones diferenciales. Sistemas de ecuaciones diferenciales. Diagramas de fase. Ecuaciones en diferencia. Ecuaciones en diferencia - sistemas y diagramas de fase. Principio de Pontryagin. Cálculo de variaciones. Ecuación de Euler. Programación dinámica. Ecuaciones de Bellman.

Créditos

3

Distribución

-

MATE 2714 Int.Modelos Matem.Gest.Finan

Créditos

3

Distribución

-

MATE 2722 Modelos de Poblacion y Epidemiologia

El objetivo de este curso es familiarizar a los estudiantes con modelos matemáticos aplicables a las ciencias sociales y naturales. Se verán modelos de crecimiento e interacción de poblaciones: la ecuación logística, competencia de especies (ecuación de Lotka-Volterra), modelo predador-presa, modelos epidemiológicos. Se incluirá una introducción a sistemas dinámicos.

Créditos

3

Distribución

-

MATE 3000 Seminario Electivo

Asistencia y participación activa en un seminario regular del Departamento.

Créditos

2

MATE 3101 Algebra Abstracta 2

La primera parte de la clase se concentra en el estudio de anillos y módulos sobre anillos con énfasis en los anillos de polinomios.  La segunda parte se concentra en campos y teoría de Galois. Mostramos como algunas preguntas clásicas sobre la solvabilidad de polinomios y construcciones con regla y compás se traduce a problemas de extensiones de cuerpos y probamos la insolubilidad de la quíntica. Probamos la correspondencia de Galois y calculamos el grupo de Galois de un polinomio de cuarto grado. Estudiamos campos finitos, extensiones algebraicas y trascendentes y clasificamos campos algebraicamente cerrados.

Créditos

3

Distribución

-

MATE 3105 Teoría Algebráica de Números

Este será un curso introductorio estándar en teoría algebraica de números. La idea es estudiar las propiedades aritméticas del anillo de enteros de un cuerpo de números—este anillo juega el papel de los enteros, como sub-anillo de los racionales, dentro del campo de números. Ejemplos específicos de lo que estudiaremos son los ideales primos de estos anillos, sus grupos de unidades, sus propiedades de ramificación y sus funciones zeta.

Créditos

3

Distribución

-

MATE 3112 Geometria Discreta

Comenzaremos con el estudio de politopos convexos y sus propiedades, junto con muchos ejemplos. Luego veremos grupos de reflexiones, en donde se introducirán ejemplos en geometrías no euclidianas, y diversos grupos de simetrías y teselaciones. Terminaremos hablando de superficies discretas, mencionando versiones discretas de temas de geometría diferencial, como curvaturas y superficies minimales.

Créditos

3

Distribución

-

MATE 3116 Combinatoria de Determinantes

Es un curso sobre los determinantes y como se les entiende esquemáticamente en el contexto de fenómenos planar y non-crossing. También vamos introducir y estudiar los clúster álgebras - un concepto que se desarrolló, en parte, para ayudar a analizar las identidades algebraicas y unas fórmulas para las expansiones determinantales (y expansiones de los objetos que se comportan como los determinantes).

Créditos

3

Distribución

-

MATE 3120 Logica 1

Este curso es una introducción con énfasis matemático a la lógica. El contenido mínimo del curso incluye el estudio del cálculo de proposiciones y de predicados: simbolización, sintaxis, semántica, deducción formal, teoremas de validez y completitud para estos cálculos. Se da una introducción a calculabilidad: funciones recursivas, funciones Turing-calculables, equivalencia entre ellas. Se estudian algunas relaciones entre calculabilidad y propiedades formales de los cálculos lógicos estudiados.

Créditos

3

Distribución

-

MATE 3121 Logica 2

En éste curso pretendemos presentar una introducción a los temas más importantes de la Lógica Matemática como son: el teoremas de completitud para la lógica de primer orden y el teorema de incompletitud de Gödel de la aritmética formal. El segundo tema que abordaremos será la teoría axiomática de conjuntos de Zermelo – Frenkel con el axioma de escogencia, ordinales, cardinales y aritmética cardinal. Finalmente haremos una introducción a la teoría de modelos.

Créditos

3

Distribución

-

MATE 3125 Logica Modal

En este curso opcional de pregrado en matemáticas el estudiante obtendrá los fundamentos de la teoría de lógicas modales proposicionales desde la perspectiva de la semántica relacional (modelos de Kripke). Estos fundamentos incluyen técnicas básicas de demostración, teoremas de correspondencia, resultados de decidibilidad y ejemplos de aplicaciones a otras disciplinas. Si el tiempo y los intereses de los estudiantes lo permiten, el curso incluye también una introducción a la lógica proposicional intuicionista, que si bien no es una lógica modal, es cercana a éstas en varios aspectos. La inclusión de este tema permite que el estudiante se familiarice con la noción y uso del álgebra de Lindenbaum asociada a un lenguaje lógico.

Créditos

3

Distribución

-

MATE 3129 Topología Dócil y Estructuras O-Minimales

Una estructura o-minimal es un conjunto linealmente ordenado dotado con estructura adicional (por ejemplo, de un anillo o campo, o con aún más operaciones) tal que todos sus subconjuntos definibles son uniones finitas de puntos y intervalos. Aquí “definible” quiere decir en el lenguaje de la lógica del primer orden, que tiene símbolos para la igualdad, las operaciones booleanas, y cuantificadores (“para todo” y “existe algún”). Resulta que el campo de los números reales es o-mimal, y que sigue siéndolo aún si agregamos algunas operaciones tales como la exponenciación. En cierto sentido, la estudia de estructuras o-minimales es una generalización de la geometría sobre los reales.

Las “variedades” o subconjuntos definibles de R^n en una estructura o-minimal (R, <, …) poseen una bonita teoría de dimensión y son dóciles en un sentido topológico. Por ejemplo, se puede descomponerlos en un número finito de células (gráficas y regiones entre gráficas de funciones continuas) y tienen triangulaciones. Durante las últimas décadas el concepto de o-minimalidad ha tenido aplicaciones fascinantes a la geometría algebraica, como la demostración de Jonathan Pila de la conjetura de André-Oort para productos de curvas modulares.


Créditos

3

Distribución

-

MATE 3131 Teoria Descriptiva de Conjuntos

En esta clase está dividida en dos partes: 1. Ordinales y cardinales: En ésta parte vamos a cubrir nociones básicas de la teoría de conjuntos como ordinales, cardinales, aritmética de ordinales y de cardinales y la topología del orden en los ordinales. En particular vamos a estudiar conjuntos de ordinales cerrados y no acotados (clubs). y el axioma de elección. 2. Teoría descriptiva de conjuntos: La segunda parte de la clase se va a concentrar en teoría descriptiva de conjuntos. Los temas incluyen conjuntos de Borel, espacios polacos, teorema de categoría de Baire, grupos polacos, acciones de grupos polacos, relaciones de equivalencia de Borel.

Créditos

3

Distribución

-

MATE 3132 Teoria de Conjuntos 2

Este curso tiene dos objetivos principales. Uno es introducir la técnica del forcing para producir pruebas de consistencia relativa con los axiomas de la teoría de conjuntos; en particular se demostrará que la Hipótesis del Continuo es independiente de ZFC. El otro objetivo es estudiar algunas aplicaciones de la teoría de conjuntos a otras ramas de la matemática, en especial la topología y el análisis.

Créditos

3

Distribución

-

MATE 3147 Cuerpos Pseudo Finitos

La teoría de modelos es una rama de la lógica matemática que tiene muchas aplicaciones al álgebra.

En este curso estudiaremos algunas de estas aplicaciones, principalmente en los cuerpos finitos y pseudofinitos. Nos enfocaremos en las principales propiedades modelo teóricas de estos cuerpos y analizaremos la relación que hay entre estas y ciertas características algebraicas.

Créditos

3

Distribución

-

MATE 3156 Introduccion a Algebras Lie y sus Representaciones

Créditos

3

Distribución

-

MATE 3157 Introducción a las Representaciones de Grupos Finitos

El curso pretende abordar los conceptos básicos de la teoría de representaciones en el contexto de grupos finitos y en particular el grupo simétrico. Representaciones de grupos finitos, caracteres, semi-simplicidad, Lema de Schur, el anillo del grupo, el grupo simétrico, diagramas de Young, modulos de Weyl y de Specht. Dualidad de Schur-Weyl.

Créditos

3

Distribución

-

MATE 3158 Geometría Algebraica Computacional

Este curso es una introducción a los aspectos computacionales y aplicados de la geometría algebraica. Estudiaremos la teoría de variedades afines y proyectivas y además la teoría de bases de Groebner. Obtendremos una idea de cómo funcionan los sistemas de álgebra computacional para procesar los cálculos del álgebra de polinomios.

Créditos

3

MATE 3159 Algoritmos en Teoria de Invariantes

El propósito del curso es hacer una introducción a los métodos algorítmicos en geometría algebraica (bases de Grobner, series de Hilbert, etc.) en el contexto de anillos con acciones de grupos finitos o más generalmente reductivos (polinomios simétricos). Nos enfocaremos en el cálculo algorítmico de anillos de invariantes. Estas técnicas son de interés tanto en matemáticas puras como aplicadas.

Créditos

3

Distribución

-

MATE 3162 Temas Contemporaneos en Criptografia

El curso presenta, con una aproximación matemática, los avances recientes más importantes en criptografía, necesarios para resolver problemas en aplicaciones avanzadas. Cubre los prerrequisitos básicos de álgebra (por ejemplo: campos de Galois y curvas elípticas), presenta las definiciones modernas de seguridad y el objetivo principal es presentar protocolos avanzados para cumplir requisitos de privacidad o de trust particulares. El curso no presenta en detalle algunos temas "viejos" de criptografía, como DES, block ciphers, modos de operación; funciones de hash, MACs, funciones de derivación, ni tampoco miramos la programación misma de algoritmos. 

Créditos

3

Distribución

-

MATE 3172 Grupos de Permutaciones

Este curso está dirigido a estudiantes de matemáticas y estudiantes de otras ciencias que quieran usar la teoría de grupos en su carrera. Profundizaremos y extenderemos las ideas y construcciones que aparecen en el curso Álgebra Abstracta I para estudiar grupos de permutaciones y sus aplicaciones en la combinatoria y en la teoría de representaciones. Construcciones y estructura del grupo de permutaciones S_n y sus subgrupos, órbitas y estabilizadores, transitividad y k-transitividad, productos semidirectos y productos de corona, grupos primitivos y imprimitivos, permutaciones de conjuntos infinitos, y representaciones y caracteres de S_n.

MATE 3175 Introduccion a la Geometria Algebraica

Este será un curso introductorio en Geometría algebraica. En este curso estudiaremos variedades algebraicas, variedades proyectivas, y funciones entre ellas. Se establecerá un diccionario entre la geometría y el álgebra. Aprenderemos toda el álgebra conmutativa necesaria para poder desarrollar la geometría.

Créditos

3

Distribución

-

MATE 3177 El Quinto Problema de Hilbert y Otros Temas

Créditos

3

Distribución

-

MATE 3181 Complejidad Computacional

El objetivo de la teoría de la complejidad computacional es clasificar problemas computacionales por la cantidad de recursos necesaria para resolverlos. La teoría tiene conexiones con varias áreas de matemáticas como la teoría de grafos, probabilidad, y álgebra abstracta.

Créditos

3

MATE 3182 La Paradoja de Banach-Tarski

La “Paradoja de Banach-Tarski” dice que uno puede partir la esfera unitaria en R^3 en cuatro subconjuntos, que después de usar movimientos rígidos en el espacio euclídeo se reacomodan para formar dos esferas idénticas a la original. Este resultado es en sí mismo sorprendente, pero al resolver preguntas naturales como ¿Por qué no se puede hacer en el plano? y qué hay detrás de la paradoja, llevaron al descubrimiento y relación de conceptos importantes en teoría de grupos como “amenability”, propiedad T de Kazshdan, y aplicaciones muy interesantes de matemáticos como Gromov, Margullis y Tits. En este curso analizamos la “paradoja” y los elementos de su demostración, cómo nos conlleva a la noción de grupos “amenable”, la ausencia de la paradoja en dimensiones menores y consecuencias de “amenable” sobre condiciones de crecimiento y la propiedad T de Kazhdan.

Créditos

3

Distribución

-

MATE 3205 Teoría Ergodica

Este curso se centra en el estudio de los automorfismos  del espacio de Lebesgue (el intervalo [0,1] con la sigma algebra de Lebesgue y la medida usual) que preservan la medida.

Créditos

3

MATE 3210 Análisis Complejo

El análisis complejo es la teoría de funciones analíticas en el plano complejo. Es una teoría muy clásica que comenzó con los trabajos de Cauchy, Riemann y Weierstrass. Desde sus comienzos los resultados se usan cotidianamente en muchos áreas de matemáticas. En contraste a la materia “Variable compleja”, en este curso se tratan los temas básicas de la teoría del análisis complejo rigurosamente.

Créditos

3

Distribución

-

MATE 3302 Ecuaciones de la Fisica Matematica

El curso tiene como propósito la presentación teórica de las ecuaciones básicas da la Física Matemática tales como las ecuaciones de Laplace y Poisson, las ecuaciones de transmisión de calor y de onda, los sistemas de ecuaciones en derivadas parciales de tipo Navier-Stokes y similares. Una de las características del curso es la deducción detallada de todos los resultados con demostraciones. El curso tiene un énfasis teórico y es orientado principalmente a los estudiantes de las carreras Matemática y Física, aunque también puede ser útil para los estudiantes de Ingeniería que están interesados en una avanzada base teórica.

Créditos

3

Distribución

-

MATE 3361 Análisis Asintótico

Análisis Asintótico desarrolla más adelante el método de series de potencia ya conocido, por ejemplo de ecuaciones diferenciales. En el presente curso, el concepto de series asintóticas divergentes se introduce rigurosamente, y también se discute el origen principal de tales series – la integral de Laplace. Varias aplicaciones a los problemas de física matemática (funciones especiales, la teoría de funciones generalizadas) se estudian.

Créditos

3

Distribución

-

MATE 3401 Geometria Riemanniana

La geometría Riemanniana ha sido una de las áreas más importantes de las matematicas desde su inicio, en el siglo XIX, y sus aplicaciones en física teórica (en relatividad general, en particular) revolucionaron nuestra concepción del mundo. El curso que se presenta a continuación tiene como objetivo introducir las ideas fundamentales y las herramientas básicas de la geometría Riemanniana, presentando al mismo tiempo los resultados más importantes en el área y algunas de sus aplicaciones (clásicas y recientes) en el estudio de la topología de variedades diferenciales.

Créditos

3

Distribución

-

MATE 3410 Geometria Diferencial 2

Introducción a las variedades: Topología general. Variedades topológicas. Funciones de varias variables: Diferenciabilidad de funciones de varias variables. Diferenciabilidad de funciones de R^n en R^m. Espacio de vectores tangentes a un punto en R^n. Otra definición de Ta (R^n). Campos vectoriales de subconjuntos abiertos de R^n. El Teorema de la Función Inversa. El Rango de una función. Variedades diferenciables y subvariedades: Definición de variedad diferenciable. Funciones diferenciables entre variedades. Rango de una función. Inmersiones. Subvariedades. Campos vectoriales en una variedad: El espacio tangente en un punto a una variedad. Campos vectoriales. Tensores y campos tensoriales en variedades: Covectores tangentes. Formas bilineales. Campos tensoriales. Multiplicación de tensores. Derivada exterior. Integración en variedades. Integración en variedades. Variedades con borde. El Teorema de Stokes.

Créditos

3

Distribución

-

MATE 3414 Variedades Toricas I

Las variedades tóricas son objetos en la interseccion entre combinatoria, teoría de representaciones y geometría algebraica (formalmente se definen como “clausuras” del grupo algebraico (C^*)^n). Son además una manera muy concreta de aprender geometría algebraica y un área de investigación actual muy activa. El propósito de este curso es familiarizar al estudiante con las definiciones y propiedades principales de este tipo de variedades y desarrollar la capacidad de calcular en ejemplos concretos.

Créditos

3

MATE 3415 Geometria Lorentziana

Se introducen la herramientas básicas para el estudio de la geometría de variedades con una métrica de Lorentz. Se estudiará además, con miras en sus aplicaciones a la física, la estructura causal en dicha geometría.

Créditos

3

Distribución

-

MATE 3420 Topologia 1

La topología es la rama de las matemáticas dedicada al estudio de las propiedades de los cuerpos geométricos que permanecen inalteradas por deformaciones continuas. La disciplina origina como una formalización y generalización de conceptos, tales como límite y transformación continua que aparecen en análisis y en geometría. En el curso se da una presentación básica a los conceptos de esta disciplina.

Créditos

3

Distribución

-

MATE 3422 Topologia Algebraica

En este curso, se usarán las formas diferenciales como una herramienta para el estudio de algunos aspectos centrales de la Topología Algebraica tales como Teorías Cohomológicas, Dualidad de Poincaré, el isomorfismo de Thom, etc. Nos limitaremos a la categoría de las variedades diferenciables, principalmente. Las técnicas usadas son útiles para entender algunos de los aspectos más importantes de la Topología Algebraica, como sucesiones espectrales, clases características, geometría compleja, etc.

Créditos

3

Distribución

-

MATE 3423 Topología Computacional y Análisis de Datos

Créditos

3

Distribución

-

MATE 3426 Grupos de Lie

El objetivo de este curso es introducir la teoría básica de grupos de Lie, álgebras de Lie y los fundamentos de la teoría de representaciones asociada, con el objeto de estudiar la geometría de espacios homogéneos, i.e. espacios que son cocientes de grupos de Lie por subgrupos cerrados.

Créditos

3

Distribución

-

MATE 3441 Haces Fibrados

Los haces vectoriales y en forma más general los haces fibrados juegan un papel importante en las matemáticas y la física matemática. La noción de haz vectorial surge al estudiar las variedades diferenciables y alrededor de la mitad del siglo pasado se desarrolló la teoría de clases características para su estudio. El curso abordará las construcciones de haces fibrados, haces vectoriales, sus propiedades topológicas y aplicaciones.

Créditos

3

Distribución

-

MATE 3510 Procesos Estocasticos

El alumno será capaz de manejar los principales modelos de la teoría moderna de procesos estocásticos y sus aplicaciones. Cadenas de Markov: Definiciones y ejemplos. Construcción y propiedades.  Clasificación de estados y de cadenas. Cadenas de Markov contables.  Teoremas del Límite. Distribución estacionaria. Cadenas de Markov finitas. Procesos de Renovación:   Ecuación de Renovación. Leyes de números grandes. Edad y vida residual. Procesos puntuales: Generalizaciones de los procesos de Poisson. Proceso no homogéneo. Procesos Compuestos de Poisson. Movimiento Browniano: Preliminares. Características simples del movimiento browniano estándar. Variaciones en el movimiento browniano. Principio de reflexión. Puente Browniano.

Créditos

3

Distribución

-

MATE 3512 Dinámica Estocástica

Este curso es una introducción a las teorías de la dinámica estocástica, es decir las herramientas y resultados para entender el comportamiento de procesos estocásticos a lo largo del tiempo en diferentes contextos, como familias i.i.d. de variables aleatorias independientes, cadenas de Markov, sistemas dinámicos aleatórios, procesos estacionarios, y ecuaciones diferenciales estocásticas simples.

Créditos

3

Distribución

-

MATE 3520 Estadistica Matematica 1

Métodos de estimación: puntual por intervalos de confianza. Métodos de los momentos, mínimos cuadrados, máxima verosimilitud. Teoría de optimalidad: Criterios de estimación, UMVU, la información. Estimadores consistentes, distribución asintótica, estimadores eficientes, insesgasdos. Intervalos de confianza y Pruebas de hipótesis. Lema de Neyman- Pearson. Razón de verosimilitud. Pruebas de ajuste, tablas de contingencia. Modelos lineales, Teorema de Gauss- Markov, Pruebas en modelos lineales.

Créditos

3

Distribución

-

MATE 3523 Estadistica no Parametrica y Remuestreo

Introducir al estudiante a las principales ideas y técnicas de la Estadística No Paramétrica, de manera de que pueda manejar tanto los aspectos teóricos del tema como los aspectos computacionales y sea capaz de seleccionar procedimientos no paramétricos adecuados para diversos problemas de la estadística e implementarlos eficientemente en la computadora, incluso en situaciones no estándar. Asimismo, exponer al estudiante a las diversas técnicas de remuestreo disponibles en la estadística moderna, haciéndolo consciente de las posibilidades y limitaciones de este tipo de procedimiento. El curso requiere un curso previo en Estadística y cierta madurez matemática, para manejar ideas tales como el Teorema del Límite Central para U-Estadísticos, por ejemplo.

Créditos

3

Distribución

-

MATE 3530 Cálculo Estocástico

Este curso es una introducción a la teoría de procesos estocásticos en tiempo continuo con énfasis en el papel central que juega el movimiento Browniano. Se presentarán algunas aplicaciones en física y en finanzas.

Créditos

3

Distribución

-

MATE 3533 Procesos de Levy

Este curso es una introducción a la teoría de procesos estocásticos en tiempo continuo con énfasis en el papel central que juega el movimiento Browniano y sus generalizaciones naturales, los procesos de Lévy. Se presentarán algunas aplicaciones en biología y física.

Créditos

3

Distribución

-

MATE 3707 Introduccion a la Optimizacion Convexa

El curso se enfoca en presentar la teoría necesaria para modelar y resolver problemas de optimización convexa, buscando siempre incluir ejemplos en el análisis de datos, donde estos problemas surgen.

Créditos

3

Distribución

-

MATE 3710 Matemáticas Financieras

Curso introductorio a las matemáticas financieras con dos ejes principales: Valoración de derivados y medida neutral al riesgo y optimización de portafolios.

Créditos

3

MATE 3712 Teoria de Juegos

Este curso busca formalizar el pensamiento estratégico  para la toma de decisiones en problemas que involucran interacciones entre agentes. Está dirigido a estudiantes que no sólo valoran el rigor formal en la formulación y análisis de los problemas, sino que también están interesados en la relación entre teoría y las aplicaciones. En el curso se desarrollan los conceptos relacionados con los juegos no cooperativos, cooperativos y evolutivos. Se analizan formalmente las ideas de racionalidad y equilibrio en juegos de diferente naturaleza, teniendo en cuenta la presencia de incertidumbre y utilizando diferentes métodos de solución. Se estudian aplicaciones en economía, finanzas, elección social, biología, ingeniería y redes, entre otras disciplinas.


Créditos

3

Distribución

-

MATE 3716 Optimización Combinatoria

Para resolver muchos problemas comunes se requiere encontrar una solución óptima en un espacio de soluciones muy grande, pero finito. La optimización combinatoria investiga algoritmos efectivos para resolver estos problemas, mediante el estudio de la estructura de sus espacios de soluciones. Aunque muchos problemas prácticos parecen ser bastante complicados (NP-completos), hay bastantes problemas que pueden ser resueltos por algoritmos efectivos (de tiempo polinomial).

Este curso intentará darles a los estudiantes un buen entendimiento de los aspectos teóricos de la programación lineal, varias nociones y algoritmos fundamentales de la teoría de grafos, y un sentido de la importancia de las pruebas constructivas en las matemáticas finitas. 

Créditos

3

MATE 3717 Introducción a la Teoría de Control

El curso busca presentar de una forma unificada los aspectos más importantes de la teoría de control y la teoría de control óptimo. Se expondrán también el uso reciente de técnicas de optimización aplicadas a control.

Créditos

3

MATE 3754 Teoría de Colas

Un problema típico de la teoría de colas es la siguiente: Suponga que el banco tiene un solo cajero adonde llegan los clientes en momentos aleatorios, en promedio n clientes por hora. Suponga que el tiempo que se demora el cajero en atender a un cliente es una variable aleatoria que tiene una distribución normal con media M y desviación estandar s.  En promedio, cuanto tiempo tiene que esperar un cliente en la cola? –  Se discutirán variantes y generalizaciones de este problema en el curso. 

Créditos

3

MATE 3755 Métodos Algebraicos en Optimización Polinomial I

Créditos

3

Distribución

-

MATE 3761 Optimización Lineal

El curso es una introducción a la programación lineal y sus extensiones, enfatizando la estructura matemática que la soporta, ideas geométricas, algoritmos y soluciones de problemas prácticos.

Créditos

3

Distribución

-

MATE 3801 Practica Ensenanza 1

Entrenamiento en metodología de la enseñanza. Prácticas de micro-enseñanza sobre manejo de preguntas, uso de tablero y sesión de diagnóstico. Instrucciones previas a cada clase, observaciones sobre su desarrollo, elaboración de exámenes. El estudiante dicta una sección de problemas de una magistral bajo la dirección de un profesor del Departamento.

Créditos

3

Distribución

-

MATE 3802 Practica Ensenanza 2

Instrucciones para dictar clase, lectura y discusión de artículos en Educación Matemática elaboración de exámenes, observaciones. El estudiante dicta un curso bajo la dirección de un profesor del Departamento.

Créditos

3

Distribución

-

MATE 3902 Proyecto de Grado

Elaboración de un trabajo escrito en un área específica de las matemáticas, en el cual se demuestre capacidad para la investigación y para la exposición de un tema con todos los requisitos de claridad, corrección y estilo apropiado.

Créditos

3

Distribución

-

MATE 3904 Seminario de Proyecto de Grado 1

En el curso se explica la metodología para encontrar temas de investigación en el área de las Matemáticas.

Créditos

1

Distribución

-

MATE 3905 Seminario de Proyecto de Grado 2

En este curso los estudiantes asisten al Coloquio de nuestro departamento para poder de esta forma conocer temas avanzados de investigación que podrían ser el objeto de un proyecto de grado. Al final del curso los estudiantes tienen que escoger un tema de proyecto de grado y escribir una propuesta de trabajo aprobada por un profesor de planta del departamento. El Coloquio puede ser reemplazado por la asistencia y participación activa en un seminario regular del Departamento.


 

Créditos

1

Distribución

-

MATE 3990 Inscripcion a Grado

Este curso lo deben inscribir los estudiantes de pregrado que planean recibir su grado el semestre siguiente.

Créditos

0

Distribución

-

MATE 3993 Practica Empresarial Tc

Es la práctica que se realiza en una empresa, de tiempo complete.  El estudiante solo podrá inscribir este curso durante el semestre de la práctica.  Puede reemplazar una práctica docente.

Créditos

6

Distribución

-

MATE 4001 Curso Tutorial de Maestria

Se trata de estudiar, un tema avanzado en el área de especialización del estudiante. Las sesiones serán coordinadas por el profesor y el estudiante participa activamente en éste.

Créditos

4

Distribución

-

MATE 4002 Curso Tutorial Postgrado 2

Se trata de estudiar, un tema avanzado en el área de especialización del estudiante. Las sesiones serán coordinadas por el profesor y el estudiante participa activamente en éste.

Créditos

4

Distribución

-

MATE 4003 Curso Tutorial Postgrado 3

Se trata de estudiar, un tema avanzado en el área de especialización del estudiante. Las sesiones serán coordinadas por el profesor y el estudiante participa activamente en éste.

Créditos

4

Distribución

-

MATE 4038 Prog. Funcional y Aplicaciones

Este curso de verano cubre técnicas de programación funcional, utilizando Haskell como vehículo para entender la relación entre programación funcional y matemáticas constructivas y algunos de los recientes avances en teoría y aplicaciones.

Créditos

4

MATE 4070 Curso Nivelatorio para el Posgrado de Ingeniería Bio-Médica

Este curso es una introducción a las herramientas matemáticas fundamentales para el modelamiento. Se busca familiarizar a los estudiantes, que vienen de una carrera en la que se usa poco la matemática, con conceptos de los cursos del ciclo de matemáticas de las ingenierías que se usan en modelos determinísticos.


Créditos

4

Distribución

-

MATE 4101 Algebra Conmutativa

El contenido del curso incluye los siguientes temas: Anillos e Ideales. Módulos. Anillos y módulos de fracciones. Descomposición primaria. Dependencia entera y Valoraciones. Condiciones de cadena. Anillos noetherianos. Anillos de Artin. Anillos de valoración discreta y dominios de Dedekind. Completaciones. Teoría de la dimensión y si queda tiempo, otros temas que el instructor considere apropiados.

Créditos

4

Distribución

-

MATE 4103 Teoria Algebraica de Numeros

Créditos

4

Distribución

-

MATE 4106 Algebra para Postgrado

El contenido del curso incluye los siguientes temas, que son expuestos esencialmente en el orden descrito:
1) Teoría de grupos: subgrupos y grupos cociente, acciones de grupos en conjunto y teoremas de Sylow. El teorema de estructura de grupos abelianos finitamente generados. Ejemplos centrales: grupos cíclicos, alternantes, simétricos y dihedrales. Los tres teoremas de isomorfismo de Noether.
2) Álgebra lineal: espacios vectoriales, aplicaciones lineales, determinantes, diagonalización, forma de Jordan.
3) Anillos: ideales (a izquierda y a derecha), anillos cociente, tres teoremas del isomorfismo de Noether. Ejemplos centrales: anillos polinomiales en una o varias variables, matrices, DIPs.
4) Campos: extensiones de campos, extensiones algebraicas, extensiones trascendentes, clausura algebraica, explicación del porqué el álgebra lineal funciona mejor sobre campos algebraícamente cerrados y explicación de cómo pasar a uno de ellos. Ejemplos centrlaes: Q, R, C y el campo de q elementos.
5) Módulos: submódulos, módulos cociente(caso especial: espacio vectorial dual y espacio vectorial cociente). Tres teoremas de isomorfismo de Noether. Teoremas de estructura para módulos sobre DIPs (corolario: forma canónica de Jordan y teorema de estructura para grupos abelianos). Ejemplos centrales: módulos sobre los anillos explicados anteriormente.

Créditos

4

MATE 4116 Combinatoria de Determinantes

Es un curso sobre los determinantes y como se les entiende esquemáticamente en el contexto de fenómenos planar y non-crossing. También vamos introducir y estudiar los clúster álgebras - un concepto que se desarrolló, en parte, para ayudar a analizar las identidades algebraicas y unas fórmulas para las expansiones determinantales (y expansiones de los objetos que se comportan como los determinantes).

Créditos

4

Distribución

-

MATE 4120 Logica Matematica

En éste curso pretendemos presentar una introducción a los temas más importantes de la Lógica Matemática como son: el teoremas de completitud para la lógica de primer orden y el teorema de incompletitud de Gödel de la aritmética formal. El segundo tema que abordaremos será la teoría axiomática de conjuntos de Zermelo – Frenkel con el axioma de escogencia, ordinales, cardinales y aritmética cardinal. Finalmente haremos una introducción a la teoría de modelos.

Créditos

4

Distribución

-

MATE 4127 Topología Dócil y Estructuras O-Minimales

Una estructura o-minimal es un conjunto linealmente ordenado dotado con estructura adicional (por ejemplo, de un anillo o campo, o con aún más operaciones) tal que todos sus subconjuntos definibles son uniones finitas de puntos y intervalos. Aquí “definible” quiere decir en el lenguaje de la lógica del primer orden, que tiene símbolos para la igualdad, las operaciones booleanas, y cuantificadores (“para todo” y “existe algún”). Resulta que el campo de los números reales es o-mimal, y que sigue siéndolo aún si agregamos algunas operaciones tales como la exponenciación. En cierto sentido, la estudia de estructuras o-minimales es una generalización de la geometría sobre los reales.

Las “variedades” o subconjuntos definibles de R^n en una estructura o-minimal (R, <, …) poseen una bonita teoría de dimensión y son dóciles en un sentido topológico. Por ejemplo, se puede descomponerlos en un número finito de células (gráficas y regiones entre gráficas de funciones continuas) y tienen triangulaciones. Durante las últimas décadas el concepto de o-minimalidad ha tenido aplicaciones fascinantes a la geometría algebraica, como la demostración de Jonathan Pila de la conjetura de André-Oort para productos de curvas modulares.

Créditos

4

MATE 4130 Teoria de Conjuntos 2

Este curso tiene dos objetivos principales. Uno es introducir la técnica del forcing para producir pruebas de consistencia relativa con los axiomas de la teoría de conjuntos; en particular se demostrará que la Hipótesis del Continuo es independiente de ZFC. El otro objetivo es estudiar algunas aplicaciones de la teoría de conjuntos a otras ramas de la matemática, en especial la topología y el análisis.

Créditos

4

Distribución

-

MATE 4137 Temas En Topologia Conjuntista

El objetivo de este curso es servir de puente entre un curso básico de Topología General (e.g. MATE3420) y temas recientes de investigación en el área. Algunos de los temas que trataremos son: Representación de Tychonov y compactificación de Stone- Čech. Álgebras booleanas y ultrafiltros. Dualidad de Stone. El álgebra P(ω)/Fin y el espacio βω.  Álgebras libres y los espacios de Cantor 2k. Invariantes cardinales: productos y subespacios.  Agregando estructura: Grupos, semigrupos y espacios diagonalizables.  Unicidad de grupos compactos cero-dimensionales. Todo grupo compacto es diádico. Dualidad de Pontryagin.

En la segunda parte del curso veremos algunos temas más avanzados, según el interés de los participantes. Estos podrían incluir: Metrizabilidad y espacios de Moore. Teorema de extensión de homotopías y espacios de Dowker.  Topología de “subespacios elementales". Teoría de L-espacios y S-espacios.


Créditos

4

Distribución

-

MATE 4140 Teoria de Modelos 1

Iniciar el estudio de la Teoría de Modelos de la Lógica de Primer Orden. Completud, Compacidad, Teoremas de Lowenheim-Skolem. Teorías K.Categóricas, Teorías Completas, Teoría Decidibles e Indecidibles. Equivalencia y Sumersión Elemental. Caracterización de Teorías Universales, Universales-Existenciales. Modelos Existencialmente Cerrados, Teorías Modelo Completas, Eliminación de Cuantificadores. Isomorfismos Parciales, Teoremas de Feferman-Vaugth. Teoremas de Interpolación y Definibilidad. Automorfismos, Indiscernibles, Teorema de Ehrenfeucht-Mostowski. Modelos Genéricos de Fraissé. Algebras Booleanas, Filtros, Ultrafiltros. Ultraproductos, Saturación de Ultraproductos. Tipos de Elementos, Realización y Omisión de Tipos, Saturación, Homogeneidad, Universalidad. Modelos Atómicos y Primos, Teorías Omega-Categóricas. Espacios de Tipos, Estabilidad, TeoríasOmega Estables. Después de esto el instructor podrá profundizar más en temas como las siguientes. Leyes 0-1 en Modelos Finitos. Espectro de Modelos Finitos. Relaciones con Complejidad. Teorema de Keisler-Shelah, Caracterización de Clases Elementales. Teorema de Categoricidad de Morely. Teorema de Baldwin-Lachlan.

Créditos

4

Distribución

-

MATE 4141 Teoria de Modelos 2

En éste curso estudiaremos teorías estables y simples (una forma de generalizar las anteriores) y algunos rangos asociadas a éstas como son el rango de Morley y el rango local. Se estudiarán nociones asociadas a éstas, como son divisibilidad y bifurcación de fórmulas y tipos. Mostraremos que la definibilidad de tipos caracteriza las teorías estables y que una apropiada noción de independencia caracteriza a las teorías simples. Se estudiarán nociones combinatorias asociadas a estas teorías como son la propiedad de independencia, la propiedad del orden y la propiedad del orden fuerte. Introduciremos las teorías NIP, las teorías que NO satisfacen la propiedad de independencia, otra forma de generalizar las teorías estables.

Créditos

4

Distribución

-

MATE 4147 Cuerpos Pseudo Finitos

La teoría de modelos es una rama de la lógica matemática que tiene muchas aplicaciones al álgebra.

En este curso estudiaremos algunas de estas aplicaciones, principalmente en los cuerpos finitos y pseudofinitos. Nos enfocaremos en las principales propiedades modelo teóricas de estos cuerpos y analizaremos la relación que hay entre estas y ciertas características algebraicas.

Créditos

4

Distribución

-

MATE 4156 Introduccion a las Algebras Lie y sus Representaciones

Créditos

4

Distribución

-

MATE 4157 Introducción a las Representaciones de Grupos Finitos

El curso teoría de representaciones de grupos  finitos está dirigido principalmente a estudiantes de matemáticas y física con conocimientos básicos de teoría de grupos y álgebra lineal. La idea es dar una introducción a varios temas de álgebra y teoría de representaciones que se pueden desarrollar de manera elemental y aparecen en muchas áreas de las matemáticas y de la física.

i.) Representaciones: Definiciones. Ejemplos básicos. Subrepresentaciones. Representaciones irreducibles.  Productos tensoriales de dos representaciones. Cuadrado simétrico y alternante. ii.) Teoría de caracteres: El carácter de una representación.  El lema de Schur. Relaciones de ortogonalidad entre caracteres. Descomposición de la representación regular. Número de representaciones irreducibles.  Descomposición canónica de una representación. Descomposición explícita de una representación. iii.) Subgrupos, productos y representaciones inducidas: Subgrupos abelianos.  Producto de dos grupos. Representaciones inducidas. iv.) Ejemplos y generalizaciones: Grupos cíclicos. Grupos diedrales. Grupos simétricos y alternantes. Representaciones de grupos compactos. v.) El álgebra de grupo: Representaciones y módulos Descomposición de C[G].  El centro de C[G].  Propiedades de integralidad de los caracteres.


Créditos

4

Distribución

-

MATE 4158 Geometría Algebraica Computacional

Este curso es una introducción a los aspectos computacionales y aplicados de la geometría algebraica. Estudiaremos la teoría de variedades afines y proyectivas y además la teoría de bases de Groebner. Obtendremos una idea de cómo funcionan los sistemas de álgebra computacional para procesar los cálculos del álgebra de polinomios. 

Créditos

4

MATE 4159 Algoritmos en Teoria de Invariantes

El propósito del curso es hacer una introducción a los métodos algorítmicos en geometría algebraica (bases de Grobner, series de Hilbert, etc.) en el contexto de anillos con acciones de grupos finitos o más generalmente reductivos (polinomios simétricos). Nos enfocaremos en el cálculo algorítmico de anillos de invariantes. Estas técnicas son de interés tanto en matemáticas puras como aplicadas.

Créditos

4

Distribución

-

MATE 4161 Curvas Elípticas

El objetivo de la clase es exponer las propiedades aritméticas básicas de la curvas elípticas.  La geometría diofantina trata del estudio de las soluciones en los enteros o en los racionales de ecuaciones algebraicas. Las ecuaciones lineales no poseen mayor  dificultad ; las cuadráticas, de mayor interés, fueron estudiadas ampliamente a principios del siglo XX.  El siguiente caso más simple, es el estudio de las cúbicas en dos variables : las curvas elípticas. Son tan complejas que hoy en día sigue siendo un tema de investigación muy dinámico.

 

En la primera parte del curso, definiremos la curvas elípticas y las estudiaremos sobre

un campo de base cualquiera. Se explicará, entre otras cosas, la operación que hace de sus puntos un grupo abeliano.  Luego podremos abarcar temas más avanzados, según el tiempo y el interés de los estudiantes: sobre campos finitos, demostrando el teorema de Hasse-Weil; sobre el campo de los complejos, demostrando el teorema de uniformización; sobre campos de números, demostrando el teorema de Mordell-Weil.

Créditos

4

MATE 4172 Grupos de Permutaciones

Este curso está dirigido a estudiantes de matemáticas y estudiantes de otras ciencias que quieran usar la teoría de grupos en su carrera. Profundizaremos y extenderemos las ideas y construcciones que aparecen en el curso Álgebra Abstracta I para estudiar grupos de permutaciones y sus aplicaciones en la combinatoria y en la teoría de representaciones. Construcciones y estructura del grupo de permutaciones S_n y sus subgrupos, órbitas y estabilizadores, transitividad y k-transitividad, productos semidirectos y productos de corona, grupos primitivos y imprimitivos, permutaciones de conjuntos infinitos, y representaciones y caracteres de S_n.

Créditos

4

MATE 4173 Algebra Abstracta 2

La primera parte de la clase se concentra en el estudio de anillos y módulos sobre anillos con énfasis en los anillos de polinomios.  La segunda parte se concentra en campos y teoría de Galois. Mostramos como algunas preguntas clásicas sobre la solvabilidad de polinomios y construcciones con regla y compás se traduce a problemas de extensiones de cuerpos y probamos la insolubilidad de la quíntica. Probamos la correspondencia de Galois y calculamos el grupo de Galois de un polinomio de cuarto grado. Estudiamos campos finitos, extensiones algebraicas y trascendentes y clasificamos campos algebraicamente cerrados.

Créditos

4

Distribución

-

MATE 4175 Introduccion a la Geometria Algebraica

Este será un curso introductorio en Geometría algebraica. En este curso estudiaremos variedades algebraicas, variedades proyectivas, y funciones entre ellas. Se establecerá un diccionario entre la geometría y el álgebra. Aprenderemos toda el álgebra conmutativa necesaria para poder desarrollar la geometría.

Créditos

4

Distribución

-

MATE 4176 Grupo Amenable

La “Paradoja de Banach-Tarski” dice que uno puede partir la esfera unitaria en R^3 en cuatro subconjuntos, que después de usar movimientos rígidos en el espacio euclídeo se reacomodan para formar dos esferas idénticas a la original. Este resultado es en sí mismo sorprendente, pero al resolver preguntas naturales como ¿Por qué no se puede hacer en el plano? y qué hay detrás de la paradoja, llevaron al descubrimiento y relación de conceptos importantes en teoría de grupos como “amenability”, propiedad T de Kazshdan, y aplicaciones muy interesantes de matemáticos como Gromov, Margullis y Tits.  En este curso analizamos la “paradoja” y los elementos de su demostración, cómo nos conlleva a la noción de grupos “amenable”, la ausencia de la paradoja en dimensiones menores y consecuencias de “amenable” sobre condiciones de crecimiento y la propiedad T de Kazhdan.

Créditos

4

Distribución

-

MATE 4177 El Quinto Problema de Hilbert y Otros Temas

Créditos

4

Distribución

-

MATE 4178 Model Checking Probabilístico

Créditos

4

Distribución

-

MATE 4201 Analisis para Postgrado

1. Análisis Real
Espacios métricos, completitud, completacion de un espacio métrico, compacidad, conexidad.

2. Introducción al Análisis Funcional
Introducción a la medida de Lebesgue, Teorema de la convergencia Monotona,Teorema de la Convergencia Dominada, Lema de Fatou; Espacios Lp. Espacios Ck [a; b], Teorema de Arzela-Ascoli, Teorema de Stone-Weierstrass.

3. Análisis Complejo
Funciones holomorfas, Ecuaciones de Cauchy-Riemann, Teorema de Cauchy y Analiticidad, Calculo de Residuos, Teorema Fundamental del Álgebra.


Créditos

4

MATE 4210 Analisis Complejo

El análisis complejo es la teoría de funciones analíticas en el plano complejo. Es una teoría muy clásica que comenzó con los trabajos de Cauchy, Riemann y Weierstrass. Desde sus comienzos los resultados se usan cotidianamente en muchos áreas de matemáticas. En contraste a la materia “Variable compleja”, en este curso se tratan los temas básicas de la teoría del análisis complejo rigurosamente.

Créditos

4

Distribución

-

MATE 4220 Medida e Integracion

El curso da una introducción a la teoría de la medida de Lebesgue y sus aplicaciones al análisis funcional y a la probabilidad.
INTEGRACIÓN ABSTRACTA: El concepto de medibilidad. Propiedades elementales de las medidas. Integración de funciones positivas. Integración de funciones complejas. Conjuntos de medida cero. MEDIDAS DE BOREL POSITIVAS: El Teorema de Representación de Riesz . Regularidad de las medidas de Borel. La medida de Lebesgue. Propiedades de continuidad de las funciones medibles. MEDIDAS COMPLEJAS: Variación total. Continuidad absoluta. El teorema de Radon–Nikodym. INTEGRACIÓN SOBRE ESPACIOS PRODUCTO: Medibilidad de productos cartesianos. El teorema de Fubini. Completación de medidas producto. Convoluciones. Funciones de distribución. DIFERENCIACIÓN: Derivada de medidas. El Teorema Fundamental del Cálculo. Transformaciones diferenciables. ESPACIOS LP: Funciones convexas y desigualdades. Espacios Lp. Aproximación por funciones continuas.

Créditos

3

Distribución

-

MATE 4301 Teoría de Ecuaciones Diferenciales Parciales

El curso tiene como propósito la presentación teórica de las ecuaciones básicas da la Física Matemática tales como las ecuaciones de Laplace y Poisson, las ecuaciones de transmisión de calor y de onda, los sistemas de ecuaciones en derivadas parciales de tipo Navier-Stokes y similares. Una de las características del curso es la deducción detallada de todos los resultados con demostraciones. El curso tiene un énfasis teórico y es orientado principalmente a los estudiantes de las carreras Matemática y Física, aunque también puede ser útil para los estudiantes de Ingeniería que están interesados en una avanzada base teórica.

Créditos

4

MATE 4303 Funciones Generalizadas

Este curso tiene como propósito la presentación teórica de los aspectos fundamentales de la teoría de las Funciones Generalizadas. Una de las características del curso es la deducción detallada de todos los resultados con demostraciones. El curso tiene un énfasis teórico y es orientado principalmente a los estudiantes de la carrera Matemática, aunque también puede ser útil para los estudiantes de Física.

La teoría de las funciones generalizadas (FG) es una parte importante del Análisis que extiende el concepto de una función a los funcionales lineales continuos actuando sobre un espacio determinado de funciones básicas.

Créditos

4

Distribución

-

MATE 4330 Analisis Funcional

Espacios de Banach: Definiciones y ejemplos. Subespacios, transformaciones lineales, espacios cocientes. Dualidad: el teorema de Hahn-Banach. Teoremas de Banach-Steinhaus, de la Aplicación Abierta y del Gráfico Cerrado. Aplicaciones: Operadores adjuntos. Espacios de Hilbert: Definiciones y ejemplos, ortogonalidad. Operadores continuos: convergencia de operadores. Operadores hermitianos, normales y unitarios. Proyecciones ortogonales. Operadores compactos: Introducción a la teoría espectral.

Créditos

3

Distribución

-

MATE 4331 Teoria Espectral de Operadores

Este curso tiene como propósito la presentación teórica de los aspectos fundamentales de la teoría espectral de los operadores lineales. Una de las características del curso es la deducción detallada de todos los resultados con demostraciones. 1.Criterios de compacidad en varios espacios funcionales 2. Operadores compactos auto-adjuntos en los espacios de Hilbert, su semejanza con las matrices simétricas. 3. Operadores compactos en los espacios de Hilbert, Teoremas de Fredholm para las ecuaciones funcionales, sus aplicaciones para las ecuaciones integrales con núcleos no-singulares. 4. Representación integral de los operadores auto-adjuntos y de las funciones de esos operadores, como descomposición en la medida espectral..  5. El espectro y el espectro esencial de los operadores auto-adjuntos. 6. Representación integral explícita del laplaciano actuando en el espacio de Sobolev, forma explícita de los proyectores sobre los subespacios invariantes del laplaciano. 7.  Clasificación del espectro del laplaciano (puntual, continuo, esencial, residual) actuando en los espacios de Sobolev , como función de p.   8. Algunas aplicaciones de la teoría espectral a los problemas de unicidad de la hidrodinámica matemática.

Créditos

4

Distribución

-

MATE 4351 Metodo de Elementos Finitos

Créditos

4

Distribución

-

MATE 4353 Introducción a los Modelos de Ecuaciones Diferenciales Estocásticas y sus Dinamicas

Créditos

4

Distribución

-

MATE 4361 Análisis Asintótico

Análisis Asintótico desarrolla más adelante el método de series de potencia ya conocido, por ejemplo de ecuaciones diferenciales. En el presente curso, el concepto de series asintóticas divergentes se introduce rigurosamente, y también se discute el origen principal de tales series – la integral de Laplace. Varias aplicaciones a los problemas de física matemática (funciones especiales, la teoría de funciones generalizadas) se estudian.

Créditos

4

Distribución

-

MATE 4401 Geometria Riemanniana

La geometría Riemanniana ha sido una de las áreas más importantes de las matematicas desde su inicio, en el siglo XIX, y sus aplicaciones en física teórica (en relatividad general, en particular) revolucionaron nuestra concepción del mundo. El curso que se presenta a continuación tiene como objetivo introducir las ideas fundamentales y las herramientas básicas de la geometría Riemanniana, presentando al mismo tiempo los resultados más importantes en el área y algunas de sus aplicaciones (clásicas y recientes) en el estudio de la topología de variedades diferenciales.

Créditos

4

Distribución

-

MATE 4412 Geometría Diferencial y Geometría Riemanniana

La geometría Riemanniana ha sido una de las áreas más importantes de las matematicas desde su inicio, en el siglo XIX, y sus aplicaciones en física teórica (en relatividad general, en particular) revolucionaron nuestra concepción del mundo. El curso que se presenta a continuación tiene como objetivo introducir las ideas fundamentales y las herramientas básicas de la geometría Riemanniana, presentando al mismo tiempo los resultados más importantes en el área y algunas de sus aplicaciones (clásicas y recientes) en el estudio de la topología de variedades diferenciales.

Créditos

4

MATE 4421 Topologia Algebraica

En este curso, se usarán las formas diferenciales como una herramienta para el estudio de algunos aspectos centrales de la Topología Algebraica tales como Teorías Cohomológicas, Dualidad de Poincaré, el isomorfismo de Thom, etc. Nos limitaremos a la categoría de las variedades diferenciables, principalmente. Las técnicas usadas son útiles para entender algunos de los aspectos más importantes de la Topología Algebraica, como sucesiones espectrales, clases características, geometría compleja, etc.

Créditos

4

Distribución

-

MATE 4424 Topologia Algebraica 2

Profundizar en las aplicaciones de las Teorías de Homología, Cohomología y Clases Características. Evidenciar la relación de estas teorías con la Geometría. Teoría de Transversalidad en Superficies Compactas. Topología de Variedades de Baja Dimensión. Clases Características de Chern y de Pontrjagyn. Breve introducción a la Geometría Compleja y Compleja Generalizada. Obstrucciones para la Existencia de Estructuras Complejas Generalizadas.

Créditos

4

Distribución

-

MATE 4426 Grupos de Lie

El objetivo de este curso es introducir la teoría básica de grupos de Lie, álgebras de Lie y los fundamentos de la teoría de representaciones asociada, con el objeto de estudiar la geometría de espacios homogéneos, i.e. espacios que son cocientes de grupos de Lie por subgrupos cerrados.

Créditos

4

Distribución

-

MATE 4441 Haces Fibrados

Los haces vectoriales y en forma más general los haces fibrados juegan un papel importante en las matemáticas y la física matemática. La noción de haz vectorial surge al estudiar las variedades diferenciables y alrededor de la mitad del siglo pasado se desarrolló la teoría de clases características para su estudio. El curso abordará las construcciones de haces fibrados, haces vectoriales, sus propiedades topológicas y aplicaciones.

Créditos

4

Distribución

-

MATE 4452 Topología Computacional y Análisis de Datos

Créditos

4

Distribución

-

MATE 4512 Dinámica Estocástica

Este curso es una introducción a las teorías de la dinámica estocástica, es decir las herramientas y resultados para entender el comportamiento de procesos estocásticos a lo largo del tiempo en diferentes contextos, como familias i.i.d. de variables aleatorias independientes, cadenas de Markov, sistemas dinámicos aleatórios, procesos estacionarios, y ecuaciones diferenciales estocásticas simples.

Créditos

4

Distribución

-

MATE 4523 Estadística no Paramétrica y Remuestreo

Introducir al estudiante a las principales ideas y técnicas de la Estadística No Paramétrica, de manera de que pueda manejar tanto los aspectos teóricos del tema como los aspectos computacionales y sea capaz de seleccionar procedimientos no paramétricos adecuados para diversos problemas de la estadística e implementarlos eficientemente en la computadora, incluso en situaciones no estándar. Asimismo, exponer al estudiante a las diversas técnicas de remuestreo disponibles en la estadística moderna, haciéndolo consciente de las posibilidades y limitaciones de este tipo de procedimiento. El curso requiere un curso previo en Estadística y cierta madurez matemática, para manejar ideas tales como el Teorema del Límite Central para U-Estadísticos, por ejemplo.

Créditos

4

Distribución

-

MATE 4527 Reconocimiento de Patrones

Créditos

4

Distribución

-

MATE 4530 Calculo Estocastico

Introducir al estudiante al movimiento Browniano y algunas de sus propiedades. Presentarle la teoría básica de integración estocástica con respecto al movimiento Browniano y su relación con las ecuaciones diferenciales estocásticas de difusión. Darle la posibilidad al estudiante de aplicar estos conceptos en el contexto de las aplicaciones en finanzas.

Créditos

4

Distribución

-

MATE 4533 Procesos de Levy

Este curso es una introducción a la teoría de procesos estocásticos en tiempo continuo con énfasis en el papel central que juega el movimiento Browniano y sus generalizaciones naturales, los procesos de Lévy. Se presentarán algunas aplicaciones en biología y física.

Créditos

4

Distribución

-

MATE 4706 Optimización Convexa 2

El propósito de este curso es estudiar dos aspectos importantes de la optimización convexa:

1. Métodos numéricos (demostrar que el problema de aproximar la solución a un problema de optimización convexa con precisión muy alta es de complejidad POLINOMIAL) y discutir algunas implementaciones eficientes.

2. El rol de la optimización convexa en la aproximación de problemas combinatorios (el algoritmo de Goemans-Williamson y las jerarquías de aproximación de Lasserre y Parrilo para problemas de momentos).

Se discutirán además muchas aplicaciones de la optimización convexa que resultan de estos dos aspectos.

Créditos

4

MATE 4707 Introducción a la Optimización Convexa

El curso se enfoca en presentar la teoría necesaria para modelar y resolver problemas de optimización convexa, buscando siempre incluir ejemplos en el análisis de datos, donde estos problemas surgen.

Créditos

4

Distribución

-

MATE 4755 Métodos Algebraicos en Optimización Polinomial I

Créditos

4

Distribución

-

MATE 4901 Seminario de Postgrado 1

El objetivo es poner al estudiante en contacto con una gama amplia de temas matemáticos avanzados y enseñarle a sintetizar y exponer oralmente dichos temas con claridad y precisión.

Créditos

2

Distribución

-

MATE 4902 Seminario de Postgrado 2

El objetivo es poner al estudiante en contacto con una gama amplia de temas matemáticos avanzados y enseñarle a sintetizar y exponer oralmente dichos temas con claridad y precisión. En éste seminario el estudiante decidirá el tema en el área en que piensa desarrollar su trabajo de grado y preparará con el profesor que posiblemente será su director de trabajo de grado una exposición sobre el tema escogido.

Créditos

2

Distribución

-

MATE 4903 Seminario de Trabajo de Grado

Su objetivo es introducir plenamente al estudiante en la actividad investigativa, por medio del estudio directo de la literatura matemática especializada y capacitarlo, no solo para la solución de problemas, sino para su adecuada formulación. El estudiante debe presentar el proyecto de tesis al Comité de Postgrado e Investigaciones del Departamento antes de la última semana de retiros del semestre, se espera que el estudiante avance en su investigación en el periodo posterior.

Créditos

3

Distribución

-

MATE 4904 Trabajo de Grado

El estudiante deberá elaborar un trabajo de investigación en alguna de las áreas matemáticas que el Programa de Magíster ofrece. Éste debe demostrar que el autor ha realizado un trabajo de asimilación y sistematización, o una exploración cuidadosa en la frontera de un tema concreto, evidenciando cierto grado de creatividad y una gran familiaridad con la información reciente sobre el tema. El Trabajo de Grado debe estar redactado en castellano o inglés y poseer la organización formal propia de un trabajo científico.

Créditos

12

Distribución

-

MATE 4990 Inscripcion a Grado

Este curso lo deben inscribir los estudiantes de posgrado que planean recibir su grado el semestre siguiente.

Créditos

0

Distribución

-

MATE 4998 Intercambio Internacional

Materia que inscriben los estudiantes de posgrado cuando hacen intercambios académicos con Universidades de otros países.

Créditos

0

MATE 6901 Seminario de Postgrado 1

El objetivo es poner al estudiante en contacto con una gama amplia de temas matemáticos avanzados y enseñarle a sintetizar y exponer oralmente dichos temas con claridad y precisión.


Créditos

2

Distribución

-

MATE 6902 Seminario de Postgrado 2

El objetivo es poner al estudiante en contacto con una gama amplia de temas matemáticos avanzados y enseñarle a sintetizar y exponer oralmente dichos temas con claridad y precisión.

En éste seminario el estudiante decidirá el tema en el área en que piensa desarrollar su trabajo de grado y preparará con el profesor que posiblemente será su director de trabajo de grado una exposición sobre el tema escogido.

Créditos

2

Distribución

-

MATE 6903 Proyecto de Tesis 1

En este curso los estudiantes presentan al comité de posgrados un plan de trabajo en un tema avanzado de investigación, avalado por su director o tutor. Deben realizar un informe de sus actividades durante el semestre, basados en una propuesta del área en la cual planean preparar su proyecto de tesis de doctorado.

Créditos

6

Distribución

-

MATE 6904 Proyecto de Tesis 2

La evaluación de la asignatura Proyecto de Tesis 2 dependerá de la evaluación de la Sustentación del Proyecto de Tesis.

El estudiante deberá presentar el Proyecto de Tesis, avalado por su Director (y su Codirector, en caso de tenerlo) ante el Comité de Postgrado e Investigaciones del Departamento.Para su evaluación, el Comité designa a un experto en el tema, distintos al Director y al Codirector, el cual deberá tener experiencia en la dirección de tesis de doctorado. El evaluador deberá emitir un concepto sobre el proyecto, juzgando si es una investigación apropiada para tesis doctoral, viable y original.

Créditos

6

Distribución

-

MATE 6970 Examen de Conocimiento

El estudiante deberá presentar dos Exámenes de Conocimiento: Examen de Conocimiento 1 y Examen de Conocimiento 2, en áreas diferentes. El estudiante podrá presentar estos exámenes escogiendo entre las áreas de investigación que soporta el programa de doctorado.

Créditos

0

Distribución

-

MATE 6971 Examen de Conocimiento 2

El estudiante deberá presentar dos Exámenes de Conocimiento: Examen de Conocimiento 1 y Examen de Conocimiento 2, en áreas diferentes. El estudiante podrá presentar estos exámenes escogiendo entre las áreas de investigación que soporta el programa de doctorado.

Créditos

0

Distribución

-

MATE 6975 Sustentacion de Proyecto

El estudiante deberá sustentar el Proyecto de Tesis presentado en el curso MATE6904 Proyecto de Tesis 2, Para su evaluación, el Comité designa a un experto en el tema, distintos al Director y al Codirector, el cual deberá tener experiencia en la dirección de tesis de doctorado. El evaluador deberá emitir un concepto sobre el proyecto, juzgando si es una investigación apropiada para tesis doctoral, viable y original.
Este curso lo deben inscribir aquellos estudiantes que estén cursando MATE6904 Proyecto de Tesis 2

Créditos

0

Distribución

-

MATE 6976 Pasantia 2

Créditos

0

Distribución

-

MATE 6979 Pasantia

El estudiante deberá realizar una pasantía por un tiempo no menor de un semestre académico –no necesariamente consecutivos – en una universidad o en un centro de investigación, de reconocido prestigio, en el exterior. Para la aprobación de la Pasantía, el Comité de Postgrado e Investigaciones verificará que en la institución donde el estudiante realizará su pasantía se encuentra un experto en el área en la cual el estudiante realiza o realizará su Tesis, dispuesto a asesorarlo.
En este período el estudiante debe trabajar en su tesis doctoral bajo la supervisión de su Director y/o Codirector de Tesis.

Créditos

0

Distribución

-

MATE 6980 Pretesis 1

Al final del semestre el estudiante deberá presentar un escrito sobre el desarrollo de su investigación a su Director de Tesis.

Créditos

10

Distribución

-

MATE 6981 Pretesis 2

Al final del semestre el estudiante deberá presentar un escrito sobre el desarrollo de su investigación a su Director de Tesis.

Créditos

10

Distribución

-

MATE 6982 Pretesis 3

Al final del semestre el estudiante deberá presentar un escrito sobre el desarrollo de su investigación a su Director de Tesis.

Créditos

10

Distribución

-

MATE 6984 Pretesis 4

Al final del semestre el estudiante deberá presentar un escrito sobre el desarrollo de su investigación a su Director de Tesis.

Créditos

10

Distribución

-

MATE 6985 Pretesis 5

Al final del semestre el estudiante deberá presentar un escrito sobre el desarrollo de su investigación a su Director de Tesis.

Créditos

10

Distribución

-

MATE 6986 Pretesis 6

Al final del semestre el estudiante deberá presentar un escrito sobre el desarrollo de su investigación a su Director de Tesis.

Créditos

10

Distribución

-

MATE 6989 Tesis

La tesis de doctorado debe basarse en un Proyecto de Tesis aprobado y sus resultados deben llevar a un trabajo de investigación que constituya un aporte original a la matemática. Además debe tener méritos para generar publicaciones en revistas especializadas de reconocido valor científico internacional. El documento debe redactarse en castellano o en inglés, y debe poseer la organización formal propia de un trabajo científico. La evaluación de la asignatura Tesis dependerá de la evaluación de la Sustentación de la Tesis.

Créditos

10

Distribución

-

MATE 6990 Defensa de Tesis

La tesis de doctorado debe basarse en un Proyecto de Tesis aprobado y sus resultados deben llevar a un trabajo de investigación que constituya un aporte original a la matemática. Además debe tener méritos para generar publicaciones en revistas especializadas de reconocido valor científico internacional.
La integración mínima del Jurado de Tesis deberá cumplir lo establecido por el Reglamento General de Estudiantes de Doctorado, y cumplir además que al menos dos (2) de los jurados deben ser externos a la Universidad de los Andes. Todos los jurados deben tener doctorado, o en caso de ser internos tener el aval del Consejo Académico para dirigir tesis. La sustentación de la tesis de doctorado se realizará ante el jurado, y ellos se encargarán de evaluarla con nota de “Aprobado” o “Reprobado”-
Este curso lo deben inscribir conjuntamente con MATE6989 Tesis

Créditos

0

Distribución

-

MATE 6998 Intercambio Internacional

Materia que inscriben los estudiantes de posgrado cuando hacen intercambios académicos con Universidades de otros países.

Créditos

0

Distribución

-